Issue
Korean Journal of Chemical Engineering,
Vol.25, No.2, 253-258, 2008
Removal characteristics of metal cations and their mixtures using micellar-enhanced ultrafiltration
Divalent ions were removed by ultrafiltration of anionic surfactant solution and the removal characteristics in single and mixed systems were investigated. The removal efficiency was >95% when the ratio of sodium dodecyl sulfate (SDS) to metal ions (S/M ratio) was >10. In single metal systems, the removal efficiency of each metal ion was almost the same. In the mixture, however, there was slight difference (ca. 1-2%) of removal efficiency and the order was Cd2+>Cu2+>Co2+.Zn2+. As S/M ratio increased, the difference in removal efficiency diminished. To explain the difference of removal efficiency in a mixture, complexation of divalent metal ion with counterion was considered. The distribution of complexed form of each metal ion was calculated, but it did not coincide with the experimental results. Further research will be necessary for a clear explanation.
[References]
  1. Tchobanoglous G, Burton FL, Wastewater engineering: treatment, disposal, and reuse, 3 ed., Metcalf & Eddy Inc., New York, 1991
  2. Scamehorn JF, Christian SD, Elsayed DA, Uchiyama H, Younis SS, Sep. Sci. Technol., 29(7), 809, 1994
  3. Park SJ, Yoon HH, Song SK, Korean J. Chem. Eng., 14(4), 233, 1997
  4. Baek K, Lee HH, Cho HJ, Yang JW, Korean J. Chem. Eng., 20(4), 698, 2003
  5. Baek K, Kim BK, Cho HJ, Yang JW, J. Hazard. Mater., 99(3), 303, 2003
  6. Baek K, Kim BK, Yang JW, Fresenius Environmental Bulletin, 13, 105, 2004
  7. Baek K, Kim BK, Yang JW, Desalination, 156(1-3), 137, 2003
  8. Baek K, Lee HH, Yang JW, Desalination, 158(1-3), 157, 2003
  9. Baek K, Yang JW, J. Hazard. Mater., 108(1-2), 119, 2004
  10. Baek K, Yang JW, Desalination, 167(1-3), 101, 2004
  11. Baek K, Yang HW, Desalination, 167(1-3), 111, 2004
  12. Baek K, Yang JW, Chemosphere, 57, 1091, 2004
  13. Hong JJ, Yang SM, Lee CH, Choi YK, Kajiuchi T, J. Colloid Interface Sci., 202(1), 63, 1998
  14. Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257, 2003
  15. Tangvijitsri S, Saiwan C, Soponvuttikul C, Scamehorn JF, Sep. Sci. Technol., 37(5), 993, 2002
  16. Yang HS, Han KH, Kang DW, Kim YH, Korean J. Chem. Eng., 13(5), 448, 1996
  17. Yang HS, Han KH, Kang DW, Song MJ, Kim YH, HWAHAK KONGHAK, 34(4), 482, 1996
  18. Zhou P, Yan H, Gu BH, Chemosphere, 58, 1327, 2005
  19. Baek K, Yang JS, Kwon TS, Yang JW, Desalination, 206(1-3), 245, 2007
  20. Baek K, Yang JW, Sep. Sci. Technol., 40(1-3), 699, 2005
  21. Iqbal J, Kim HJ, Yang JS, Baek K, Yang JW, Chemosphere, 66, 970, 2007
  22. Kim HJ, Baek K, Kim BK, Yang JW, J. Hazard. Mater., 122(1-2), 31, 2005
  23. Lee J, Yang JS, Kim HJ, Baek K, Yang JW, Desalination, 184(1-3), 395, 2005
  24. Yang JS, Baek K, Yang JW, Desalination, 184(1-3), 385, 2005
  25. Scamehorn JF, Harwell JH, Surfactant-based separation processes, Marcel Dekker Inc., New York, 1989
  26. Paulenova A, Rajec P, Jezikova M, Kucera J, J. Radioanal. Nucl. Chem., 208, 145, 1996
  27. Sadaoui Z, Azoug C, Charbit G, Charbit F, J. Environ. Eng.-ASCE, 124, 695, 1998
  28. Mulder M, Basic principles of membrane technology, Kluwer Academic Publishers, Dordrecht, 1996
  29. Dunn RO, Scamehorn JF, Christian SD, Sep. Sci. Technol., 20, 257, 1985
  30. Shackelford JF, Introduction to materials science for engineers, 4ed., Prentice hall international, Inc., New Jersey, 1992
  31. Stumm W, Aquatic chemical kinetics: Reaction rates of process in natural waters, John Wiley & Sons, New Work, 1990