Issue
Korean Journal of Chemical Engineering,
Vol.25, No.2, 245-252, 2008
Testing of PEM fuel cell performance by electrochemical impedance spectroscopy: Optimum condition for low relative humidification cathode
Electrochemical impedance spectroscopy (EIS) was used to investigate the influence of several parameters on the performance of PEMFC. The applied frequency was in the range of 50 mHz-10 kHz. The experiment was designed by using a 2k factorial design to identify the effects of various parameters including cell voltage, flow rates of gaseous fuels and cell temperature at the saturated humidification in anode and 60% relative humidity cathode. The results indicated that the cell temperature, cell voltage and interactions of cell voltage, flow rate of H2 and O2 had a significant effect on the cell performance. In addition, the flow rate of O2 had a strong effect on the ohmic resistance and the charge transfer resistance in the system. Models describing the relationship between previous parameters and ohmic resistance, charge transfer resistance and capacitance were also developed.
[References]
  1. Hirano S, Kim J, Srinivasan S, Electrochim. Acta, 42(10), 1587, 1997
  2. Bron M, Bogdanoff P, Fiechter S, Hilgendorff M, Radnik J, Dorbandt I, Schulenburg H, Tributsch H, J. Electroanal. Chem., 517(1-2), 85, 2001
  3. Hawut W, Hunsom M, Pruksathorn K, Korean J. Chem. Eng., 23(4), 555, 2006
  4. Paganin VA, Oliveira CLF, Ticianelli EA, Springer TE, Gonzalez ER, Electrochim. Acta, 43(24), 3761, 1998
  5. Hunsom M, Dunyushkina L, Adler S, Korean J. Chem. Eng., 23(5), 720, 2006
  6. Jorgensen MJ, Primdahl S, Morgensen M, Electrochim. Acta, 44(24), 4195, 1999
  7. Lee HK, Mater. Chem. Phys., 77, 639, 2002
  8. Lai CM, Lin JC, Hsueh KL, Hwang CP, Tsay KC, Tsai L, Peng YM, Int. J. Hydrog. Energy, Article in Press
  9. Du CY, Zhao TS, Xu C, J. Power Sources, 167(2), 265, 2007
  10. Du CY, Zhao TS, Yang WW, Electrochim. Acta, 52(16), 5266, 2007
  11. Wagner N, Schnurnberger W, Muller B, Lang M, Electrochim. Acta, 43(24), 3785, 1998
  12. Eikerling M, Kornyshev AA, J. Electroanal. Chem., 475(2), 107, 1999
  13. Romero-Castanon T, Arriaga LG, Cano-Castillo U, J. Power Sources, 118(1-2), 179, 2003
  14. Easton EB, Pickup PG, Electrochim. Acta, 50(12), 2469, 2005
  15. Freire TJP, Gonzalez ER, J. Electroanal. Chem., 503(1-2), 57, 2001
  16. Andreaus B, McEvoy AJ, Scherer GG, Electrochim. Acta, 47(13-14), 2223, 2002
  17. Ciureanu M, Roberge R, J. Phys. Chem. B, 105(17), 3531, 2001
  18. Springer TE, Zawodzinski TA, Wilson MS, Gottesfeld S, J. Electrochem. Soc., 143(2), 587, 1996
  19. Wagner N, Schulze M, Electrochim. Acta, 48(25-26), 3899, 2003
  20. Schiller CA, Richter F, Gulzow E, Wagner N, Phys. Chem. Phys., 3, 2113, 2001
  21. Yang DJ, Ma JX, Xu L, Wu MZ, Wang HJ, Electrochim. Acta, 51(19), 4039, 2006
  22. Montgomery DC, Design and analysis of experiments, 5th ed. John Wiley & Sons Ltd., New York, 2001
  23. Barbie F, PEM fuel cells, Theory and practice, Elsevier Academic Press, USA, 2005
  24. O’Hayre R, Cha SW, Colella W, Fuel cell fundamentals, John Wiley & Sons, New York, 2006