Issue
Korean Journal of Chemical Engineering,
Vol.24, No.6, 1084-1088, 2007
Growth of ZnO nanoneedles on silicon substrate by cyclic feeding chemical vapor deposition: Structural and optical properties
Well-crystallized ZnO nanoneedles were grown on Au-coated Si(100) substrate by cyclic feeding chemical vapor deposition (CFCVD) process using diethyl zinc and oxygen as precursors for zinc and oxygen, respectively. Morphological investigations revealed that the as-grown nanoneedles exhibited sharpened tips and wider bases, having the typical diameters at their bases and tips, 60±10 nm and 20±10 nm, respectively. Detailed structural characterizations confirmed that the as-grown products were single crystalline with a wurtzite hexagonal phase and were grown preferentially along the [0001] direction. The room-temperature photoluminescence (PL) spectrum showed a strong and sharp UV emission at 378 nm with a very weak, suppressed and broad green emission at 520 nm, substantiating good optical properties for the as-grown ZnO nanoneedles.
[References]
  1. Iijima S, Nature, 354, 56, 1991
  2. Morales AM, Lieber CM, Science, 279(5348), 208, 1998
  3. Zhang XT, Liu Z, Leng YP, Li Q, Hark SK, Appl. Phys. Lett., 83, 5533, 2003
  4. Umar A, Ra HW, Jeong JP, Suh EK, Hahn YB, Korean J. Chem. Eng., 23(3), 499, 2006
  5. Sekar A, Kim SH, Umar A, Hahn YB, J. Cryst. Growth, 277(1-4), 471, 2005
  6. Umar A, Lee S, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 277(1-4), 479, 2005
  7. Umar A, Kim SH, Lee YS, Nahm KS, Hahn YB, J. Cryst. Growth, 282(1-2), 131, 2005
  8. Umar A, Karunagaran B, Suh EK, Hahn YB, Nanotechnology, 17, 4072, 2006
  9. Lee S, Im YH, Hahn YB, Korean J. Chem. Eng., 22(2), 334, 2005
  10. Klingshirn C, Phys. Status Solidi B, 71, 547, 1975
  11. Minne SC, Manalis SR, Quate CF, Appl. Phys. Lett., 67, 3918, 1995
  12. Zhang BP, Binh NT, Wakatsuki K, Segawa Y, Yamada Y, Usami N, Koinuma H, Appl. Phys. Lett., 84, 4098, 2004
  13. Hughes WL, Wang ZL, Appl. Phys. Lett., 82, 2886, 2003
  14. Hughes WL, Wang ZL, J. Am. Chem. Soc., 126(21), 6703, 2004
  15. Gao PX, Wang ZL, J. Appl. Phys., 97, 044304, 2005
  16. Kong XY, Wang ZL, Appl. Phys. Lett., 84, 975, 2004
  17. Umar A, Lee S, Im YH, Hahn YB, Nanotechnology, 16, 2462, 2005
  18. Umar A, Hahn YB, Nanotechnology, 17, 2174, 2006
  19. Umar A, Hahn YB, Appl. Phys. Lett., 88, 173120, 2006
  20. Yang JL, An SJ, Park WI, Yi GC, Choi W, Adv. Mater., 16, 1661, 2004
  21. Park WI, Yi GC, Kim MY, Pennycook SJ, Adv. Mater., 14(24), 1841, 2002
  22. Li YB, Bando Y, Golberg D, Appl. Phys. Lett., 84, 3603, 2004
  23. Zhang HZ, Wang RM, Zhu YW, J. Appl. Phys., 96, 624, 2004
  24. Zhang J, Yang Y, Jiang F, Li J, Physica E, 27, 302, 2005
  25. Deheer WA, Chatelain A, Ugarte D, Science, 270(5239), 1179, 1995
  26. Gerthsen D, Litvinov D, Gruber T, Kirchner C, Waag A, Appl. Phys. Lett., 81, 3972, 2002
  27. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA, J. Appl. Phys., 79, 7983, 1996
  28. Bagnall DM, Chen YF, Shen MY, Zhu Z, Goto T, Yao T, J. Cryst. Growth, 185, 605, 1998
  29. Wagner RS, Ellis WC, Appl. Phys. Lett., 4, 89, 1964
  30. Duan XF, Lieber CM, J. Am. Chem. Soc., 122(1), 188, 2000
  31. Gao PX, Wang ZL, J. Phys. Chem. B, 108(23), 7534, 2004
  32. Zhao DX, Andreazza C, Andreazza P, Ma JG, Liu YC, Shen DZ, Chem. Phys. Lett., 399(4-6), 522, 2004