Issue
Korean Journal of Chemical Engineering,
Vol.24, No.5, 897-905, 2007
Oxygen permeability and structural stability of La0.6Sr0.4Co0.2Fe0.8O3.δ membrane
La0.6Sr0.4Co0.2Fe0.8O3.δ oxides were synthesized by citrate method and hydrothermal method. The oxides prepared by citrate method are perovskite type structure, while the oxides by hydrothermal method have a small amount of secondary phase in the powder. Pyrex glass seal and Ag melting seal provided reliable gas-tight sealing of disk type dense membrane in the range of operation temperature, but commercial ceramic binder could not be removed from the support tube without damage to the tube or membrane. Though the degree of gas tightness increases in the order of glass>Ag>ceramic binder, in the case of glass seal, the undesired spreading of glass leads to an interfacial reaction between it and the membrane and reduction of effective permeation area. The oxygen flux of La0.6Sr0.4Co0.2Fe0.8O3.δ membrane increases with increasing temperature and decreasing thickness, and the oxygen permeation flux through 1.0mm membrane exposed to flowing air (Ph=0.21 atm) and helium (Pl=0.037 atm) is ca. 0.33 ml/cm2·min at 950 ℃. X-ray diffraction analysis for the membrane after permeation test over 160 h revealed that La2O3 and unknown compound were formed on the surface of membrane. The segregation compounds of surface elements formed on both surfaces of membrane irrespective of spreading of glass sealing material.
[References]
  1. Gielen D, Podkanski J, Prospects for CO2 capture and storage, IEA Publictions, Paris, 2004
  2. Thambimuthu K, Soltanieh M, Abanades JC, in IPCC special report on carbon dioxide caopture and storage, O. Davidson and B. Metz Eds., Cambridge University Press, London, 2005
  3. Burggraaf AJ, Bouwmeester HJM, in Fundamentals of inorganic membrane science and technology, A. J. Burggraaf and L. Cot Eds., Elsevier, Amsterdam, 1996
  4. Dyer PN, Richards RE, Russek SL, Taylor DM, Solid State Ion., 134(1-2), 21, 2000
  5. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N, Chem. Lett., 1743, 1985
  6. Teraoka Y, Nobunaga T, Yamazoe N, Chem. Lett., 503, 1988
  7. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N, Solid State Ion., 48, 207, 1991
  8. Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH, Solid State Ion., 53, 597, 1992
  9. Zeng Y, Lin YS, Swartz SL, J. Membr. Sci., 87, 150, 1998
  10. Xu SJ, Thomson WJ, AIChE J., 43(11), 2731, 1997
  11. Xu SJ, Thomson WJ, Ind. Eng. Chem. Res., 37(4), 1290, 1998
  12. Lane JA, Benson SJ, Waller D, Kilner JA, Solid State Ion., 121(1-4), 201, 1999
  13. Xu Q, Huang D, Chen W, Lee JH, Wang H, Yuan R, Scripta Materialia, 50, 165, 2004
  14. Jin WQ, Li SG, Huang P, Xu NP, Shi J, J. Membr. Sci., 170(1), 9, 2000
  15. Shao ZP, Yang WS, Cong Y, Dong H, Tong JH, Xiong GX, J. Membr. Sci., 172(1-2), 177, 2000
  16. Li SG, Jin WQ, Huang P, Xu NP, Shi J, Hu MZC, Payzant EA, Ma YH, AIChE J., 45(2), 276, 1999
  17. Lim KS, Lee KS, Han IS, Seo DW, Hong KS, Bai K, Woo SK, Cho TL, Journal of the Korean Ceramic Society, 38, 886, 2001
  18. Weber WJ, Stevenson JW, Armstrong TR, Pederson LR, in Mater. Res. Soc. Symp. Proc., G. A. Nazri, J.M. Taracson and M. S. Scheiber Eds., Materials Research Society, Pittsburgh, 1995
  19. Itoh N, Kato T, Uchida K, Haraya K, J. Membr. Sci., 92(3), 239, 1994
  20. Li SG, Jin WQ, Huang P, Xu NP, Shi J, Lin YS, J. Membr. Sci., 166(1), 51, 2000