Issue
Korean Journal of Chemical Engineering,
Vol.24, No.5, 781-786, 2007
Medium optimization of Rhodococcus erythropolis LSSE8-1 by Taguchi methodology for petroleum biodesulfurization
High production of Rhodococcus erythropolis LSSE8-1 and its application for the treatment of diesel oils was investigated. Culture conditions were optimized by Taguchi orthogonal array experimental design methodology. High cell density cultivation of biocatalyst with pH control and fed-batch feeding strategies was further validated in a fermentor with the optimal factors. Cell concentration of 23.9 g dry cells/L was obtained after 96 h cultivation. The resting cells and direct fermentation suspension were applied for deep desulfurization of hydrodesulfurized diesel oils. It was observed that the sulfur content of the diesel decreased from 248 to 51 μg/g by two consecutive biodesulfurizations. It implied that the biodesulfurization process can be simplified by directly mixing cell cultivation suspension with diesel oil. The biocatalyst developed with the Taguchi method has the potential to be applied to produce ultra-low-sulfur petroleum oils.
[References]
  1. Vazquez-Duhalt R, Torres E, Valderrama B, Le Borgne S, Energy Fuels, 16(5), 1239, 2002
  2. Song CS, Catal. Today, 86(1-4), 211, 2003
  3. McFarland BL, Curr. Opin. Microbiol., 2, 257, 1999
  4. Monticello DJ, Curr. Opin. Biotechnol., 11, 540, 2000
  5. Gupta N, Roychoudhury PK, Deb JK, Appl. Microbiol. Biotechnol., 66(4), 356, 2005
  6. Linguist L, Pacheco M, Oil Gas J., 97(8), 45, 1999
  7. Kilbane JJ, Jackowski K, Biotechnol. Bioeng., 40, 1107, 1992
  8. Ohshiro T, Hirata T, Hashimoto I, Izumi Y, J. Ferment. Bioeng., 82, 610, 1996
  9. Yan H, Kishimoto M, Omasa T, Katakura Y, Suga K, Okumura K, Yoshikawa O, J. Biosci. Bioeng., 89, 361, 2000
  10. Furuya T, Kirimura K, Kino K, Usami S, Fems Microbiol. Lett, 204, 129, 2001
  11. Mingfang L, Jianmin X, Zhongxuan G, Huizhou L, Jiayong C, Korean J. Chem. Eng., 20(4), 702, 2003
  12. Chang JH, Chang YK, Ryu HW, Chang HN, Fems Microbiol. Lett, 182, 309, 2000
  13. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH, Nat. Biotechnol., 14, 1705, 1996
  14. del Olmo CH, Santos VE, Alcon A, Garcia-Ochoa F, Biochem. Eng. J., 22, 229, 2005
  15. Guchhait S, Biswas D, Bhattacharya P, Chowdhury R, Chem. Eng. J., 112(1-3), 145, 2005
  16. Rashtchi M, Mohebali GH, Akbarnejad MM, Towfighi J, Rasekh B, Keytash A, Biochem. Eng. J., 29, 169, 2006
  17. Le Borgne S, Quintero R, Fuel Process. Technol., 81, 155, 2003
  18. Van Hamme JD, Singh A, Ward OP, Microbiol. Mol. Biol. R., 67, 503, 2003
  19. Prasad KK, Mohan SV, Rao RS, Pati BR, Sarma PN, Biochem. Eng. J., 24, 17, 2005
  20. Chang MY, Tsai GJ, Houng JY, Enzyme Microb. Technol., 38(3-4), 407, 2006
  21. Gou ZX, Liu HZ, Luo MF, Li S, Xing JM, Chen JY, Sci. China Ser. B, 45, 521, 2002
  22. Shan GB, Zhang HY, Xing JM, Guo C, Li WL, Liu HZ, Biochem. Eng. J., 27, 305, 2006
  23. Yu B, Ma C, Zhou W, Wang Y, Cai X, Tao F, Zhang Q, Tong M, Qu J, Xu P, Fems Microbiol. Lett, 258, 284, 2006
  24. Wang P, Krawiec S, Appl. Environ. Microbiol., 62, 1670, 1996
  25. Honda H, Sugiyama H, Saito I, Kobayashi T, J. Ferment. Bioeng., 85, 334, 1998
  26. Chang JH, Kim YJ, Lee BH, Cho KS, Ryu HW, Chang YK, Chang HN, Biotechnol. Prog., 17, 876, 2001
  27. Setti L, Lanzarini G, Pifferi PG, Fuel Process. Technol., 52(1), 145, 1997
  28. Kilbane JJ, Curr. Opin. Biotechnol., 17, 305, 2006
  29. Yu B, Xu P, Shi Q, Ma CQ, Appl. Environ. Microbiol., 72, 54, 2006
  30. Konishi M, Kishimoto K, Omasa T, Katakura Y, Shioya S, Ohtake H, J. Biosci. Bioeng., 99, 259, 2005