Issue
Korean Journal of Chemical Engineering,
Vol.24, No.5, 730-735, 2007
Simultaneous removal of chromium and organic pollutants in tannery wastewater by electroprecipitation technique
The simultaneous removal of chromium and other organic pollutants from tannery wastewater was investigated in a batch electrochemical membrane reactor. This reactor, having a total capacity of 1 liter, was separated into two compartments (anodic and cathodic compartments) by using an anionic membrane. A stainless steel sheet with the square holes having total surface area of 0.0215 m2 and a Ti/RuO2 grid was used as the cathode and anode, respectively. The results indicated that the optimum condition for removal of chromium from tannery wastewater was found at the current density of 60.5 A/m2 at initial pH of 4.5. At this condition, more than 98% of chromium was removed within 60 min. Some organic pollutants contained in wastewater such as oil and grease, color and the level of biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total kjeldahl nitrogen (TKN) were also markedly reduced.
[References]
  1. Ahn DH, Chung YC, Yoo YJ, Pak DW, Chang WS, Biotechnol. Lett., 18(8), 917, 1996
  2. Vijayaraghvan K, Murthy DVS, Bioprocess Eng., 16(3), 151, 1997
  3. Wiemann M, Schenk H, Hegemann W, Water Res., 32(3), 774, 1998
  4. Di Iaconi C, Lopez A, Ramadori R, Passino R, Environ. Sci. Technol., 37, 3199, 2003
  5. Farabegoli G, Carucci A, Majone M, Rolle E, J. Environ. Manage., 71, 345, 2004
  6. Poo KM, Im JH, Ko JH, Kim YJ, Woo HJ, Kim CW, Korean J. Chem. Eng., 22(5), 666, 2005
  7. Sekaran G, Chitra K, Mariappan M, Raghavan KV, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 31, 1996
  8. Wu Z, Cong Y, Zhou M, Ye Q, Tan T, Korean J. Chem. Eng., 19(5), 866, 2002
  9. Schrank SG, Jose HJ, Moreira RFPM, Schroder H, Chemosphere, 50, 411, 2003
  10. Dogruel S, Ates GE, Germirli BF, Orhon D, Environ. Sci. Health A, 39, 1705, 2004
  11. Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK, Korean J. Chem. Eng., 21(2), 398, 2004
  12. Kim YO, Nam HU, Park YR, Lee JH, Park TJ, Lee TH, Korean J. Chem. Eng., 21(4), 801, 2004
  13. Orhon D, Sszen S, Cokgsr EU, Ates E, IAWQ 19th Biennial International Conference, 256, 1998
  14. Iaconi CD, Lopez A, Ricco G, Ramadori R, Ann. Chim., 91, 587, 2001
  15. Song Z, Williams CJ, Edyvean RGJ, Desalination, 164(3), 249, 2004
  16. Naumczyk J, Szpyrkowicz L, Faveri R, Zillio Grandi F, T. I. Chem. Eng. B, 74, 59, 1996
  17. Szpyrkowicz L, Naumczyk J, Zilio-Grandi F, Water Res., 29, 517, 1995
  18. Szpyrkowicz L, Kelsall GH, Kaul SN, De Favei M, Chem. Eng. Sci., 56(4), 1579, 2001
  19. Vlyssides AG, Israilides CJ, Environ. Pollut., 97, 147, 1997
  20. Murugananthan M, Bhaskar RG, Prabhakar S, Sep. Purif. Technol., 40, 69, 2004
  21. Awan MA, Baig MA, Iqbal J, Aslam MR, Ijaz N, Electron. J. Environ. Agr. Food Chem., 2(5), 543, 2003
  22. Tiravanti G, Petruzzelli D, Passino R, Water Sci. Technol., 36, 197, 1997
  23. Panswad T, Chavalparit O, Chandung C, Waste Manage. Res., 19, 450, 2001
  24. APHA, AWWA and WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Part 3111 B, 1998
  25. Hunsom M, Pruksathorna K, Damronglerd S, Vergnes H, Duverneui P, Water Res., 39, 610, 2005
  26. Rajkumar D, Palanivelu K, J. Hazard. Mater., 113(1-3), 123, 2004
  27. Hunsom M, A Dissertation of Doctor of Philosophy in Chemical Technology, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 2001
  28. Roberts EPL, Hao YE, Eager S, Proceedings of the 6th World Congress of Chemical Engineering Melbourne, Australia, 2001
  29. Ram B, Bajpai PK, Parwana HK, Process Biochem., 35(3), 255, 1999
  30. Balakrishman PA, Arunagiri A, Rao PG, J. Electrost., 56, 77, 1999