Issue
Korean Journal of Chemical Engineering,
Vol.24, No.3, 445-450, 2007
Simulation of bubbling fluidized bed of fine particles using CFD
Computational fluid dynamics (CFD) simulation for bubbling fluidized bed of fine particles was carried out. The reliability and accuracy of CFD simulation was investigated by comparison with experimental data. The experimental facility of the fluidized bed was 6 cm in diameter and 70 cm in height and an agitator of pitched-blade turbine type was installed to prevent severe agglomeration of fine particles. Phosphor particles were employed as the bed material. Particle size was 22 μm and particle density was 3,938 kg/m3. CFD simulation was carried by two-fluid module which was composed of viscosity input model and fan model. CFD simulation and experiment were carried out by changing the fluidizing gas velocity and agitation velocity. The results showed that CFD simulation results in this study showed good agreement with experimental data. From results of CFD simulation, it was observed that the agitation prevents agglomeration of fine particles in a fluidized bed.
[References]
  1. Samuelsberg A, Hjertager BH, AIChE J., 42(6), 1536, 1996
  2. Mathiesen V, Solberg T, Arastoopour H, Hjertager BH, AIChE J., 45(12), 2503, 1999
  3. Arastoopour H, Gidaspow D, Powder Technol., 22, 77, 1979
  4. Tsuo YP, Gidaspow D, AIChE J., 36, 885, 1990
  5. Gidaspow D, Appl. Math. Rev., 39(1), 1, 1986
  6. Lyczkowsky RW, Folga S, Chang SL, Bouillard JX, Wang CS, Berry GF, Gidaspow D, Can. Chem. Eng., 67, 465, 1989
  7. Ding J, Lyczkowski RW, Powder Technol., 73, 127, 1992
  8. Kostamis P, Richards CW, Markatos NC, Physico Chem. Hydrody., 9, 219, 1987
  9. Theologos KN, Markatos NC, Trans. IchemE., 70, 239, 1992
  10. Theologos KN, Markatos NC, AIChE J., 39(6), 1007, 1993
  11. Matonis D, Gidaspow D, Bahary M, AIChE J., 48(7), 1413, 2002
  12. Zalc JM, Szalai ES, Alvarez MM, Muzzio FJ, AIChE J., 48(10), 2124, 2002
  13. Ortiz-Arroyo A, Larachi F, Grandjean BPA, Roy S, AIChE J., 48(8), 1596, 2002
  14. Anderson K, Sundaresan S, Jackson R, J. Fluid Mech., 303, 327, 1995
  15. Sun B, Gidaspow D, Ind. Eng. Chem. Res., 38(3), 787, 1999
  16. Benyahia S, Arastoopour H, Knowlton T, Fluidization X, Proc. Engineering Foundation Conf. on Fluidization, L.-S. Fan and T. Knowlton, Eds., New York, 1998
  17. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory descriptions, Academic Press, 1994
  18. Sinclair JL, Jackson R, AIChE J., 35, 1473, 1989
  19. Elghobashi SE, Abou-Arab TW, Phys. Fluids, 26, 931, 1983
  20. Chen CP, Can. J. Chem. Eng., 63, 349, 1985
  21. Wang ZL, Kwauk M, Li HZ, Chem. Eng. Sci., 53(3), 377, 1998
  22. Lyczkowsky RW, Gamwo IK, Dobran F, Ali H, Chao BT, Chen MM, Gidaspow D, Powder Technol., 76, 65, 1993
  23. Ding J, Gidaspow D, AIChE J., 36(4), 523, 1990
  24. Xu BH, Yu AB, Chem. Eng. Sci., 52(16), 2785, 1997
  25. Pain CC, Mansoorzadeh S, Gomes JLM, de Oliveira CRE, Powder Technol., 128(1), 56, 2002
  26. Savaqe SB, Theory of dispersed multiphase flow, R. E. Meyer, Eds., Academic Press, New York, 1983
  27. Mawatari Y, Tatemoto Y, Noda K, Powder Technol., 131(1), 66, 2003
  28. Malhotra K, Law-Kwet-Cheong L, Mujumdar AS, Powder Technol., 39, 101, 1984
  29. Park J, Kim J, Cho SH, Han KH, Yi CK, Jin GT, Korean J. Chem. Eng., 16(5), 659, 1999