Issue
Korean Journal of Chemical Engineering,
Vol.24, No.3, 403-407, 2007
Effect of cocatalyst on the chemical composition distribution and microstructure of ethylene-hexene copolymer produced by a metallocene/Ziegler-Natta hybrid catalyst
A silica-magnesium bisupport (SMB) was prepared by a sol-gel method for use as a support for metallocene/Ziegler-Natta hybrid catalyst. The SMB was treated with methylaluminoxane (MAO) prior to the immobilization of TiCl4 and rac-Et(Ind)2ZrCl2. The prepared rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst was applied to the ethylenehexene copolymerization with a variation of cocatalyst species (polymerization run 1: triisobutylaluminum (TIBAL) and methylaluminoxane (MAO), polymerization run 2: triethylaluminum (TEA) and methylaluminoxane (MAO)). The effect of cocatalysts on the chemical composition distributions (CCDs) and microstructures of ethylene-hexene copolymers was examined. It was found that the catalytic activity in polymerization run 1 was a little higher than that in polymerization run 2, because of the enhanced catalytic activity at the initial stage in polymerization run 1. The chemical composition distributions (CCDs) in the two copolymers showed six peaks and exhibited a similar trend. However, the lamellas in the ethylene-hexene copolymer produced in polymerization run 1 were distributed over smaller sizes than those in the copolymer produced in polymerization run 2. It was also revealed that the rac-Et(Ind)2ZrCl2/TiCl4/MAO/SMB catalyst preferably produced the ethylene-hexene copolymer with non-blocky sequence when TEA and MAO were used as cocatalysts.
[References]
  1. Cho HS, Lee WY, Korean J. Chem. Eng., 19(4), 557, 2002
  2. Muller AJ, Hernandez ZH, Arnal ML, Sabchez J, J. Polym. Bull., 39, 465, 1997
  3. Kaminsky W, Sinn H, Adv. Organomet. Chem., 18, 99, 1980
  4. Yoon JS, Oh JK, Hong KP, Lee IM, Korean J. Chem. Eng., 13(2), 207, 1996
  5. Jeong BG, Nam DW, Hong SD, Lee SG, Park YW, Song KH, Korean J. Chem. Eng., 20(1), 22, 2003
  6. Nowlin TE, Schregenberger SE, Shirodkar PP, Tsien GO, US Patent, 5,539,076, 1996
  7. Razavi A, US Patent, 5,914,289, 1999
  8. Jezequel M, Dufaud V, Ruiz-Garcia MJ, Carrillo-Hermosilla F, Neugebauer U, Niccolai GP, Lefebvre F, Bayard F, Corker J, Fiddy S, Evans J, Broyer JP, Malinge J, Basset JM, J. Am. Chem. Soc., 123(15), 3520, 2001
  9. Tian J, Wang S, Feng Y, Li J, Collins S, J. Mol. Catal. A-Chem., 144, 137, 1999
  10. Soga K, Kaminaka M, Macromol. Chem. Rapid Comm., 13, 221, 1992
  11. Soga K, Kaminaka M, Macromol. Chem. Phys., 195, 1369, 1994
  12. Cho HS, Chung JS, Lee WY, J. Mol. Catal. A-Chem., 159, 203, 2000
  13. Cho HS, Choi YH, Lee WY, Catal. Today, 63(2-4), 523, 2000
  14. Cho HS, Chung JS, Han JH, Ko YG, Lee WY, J. Appl. Polym. Sci., 70(9), 1707, 1998
  15. Cho HS, Lee WY, J. Mol. Catal. A-Chem., 191, 155, 2003
  16. Chung JS, Cho HS, Ko GY, Lee WY, J. Mol. Catal. A-Chem., 144, 61, 1999
  17. Ko YG, Cho HS, Choi KH, Lee WY, Korean J. Chem. Eng., 16(5), 562, 1999
  18. Cho HS, Choi DJ, Lee WY, J. Appl. Polym. Sci., 78(13), 2318, 2000
  19. Cho HS, Choi KH, Choi DJ, Lee WY, Korean J. Chem. Eng., 17(2), 205, 2000
  20. Charoenchaidet S, Chavadej S, Gulari E, J. Polym. Sci. A: Polym. Chem., 40(19), 3240, 2002
  21. Wang Q, Li LD, Fan ZQ, J. Polym. Sci. A: Polym. Chem., 43(8), 1599, 2005
  22. Hsieh ET, Randall JC, Macromolecules, 15, 1402, 1982
  23. Wild L, Ryle TR, Knobeloch DC, Peat IR, J. Polym. Sci. A: Polym. Chem., 20, 441, 1982
  24. Starch P, Polym. Int., 40, 111, 1996
  25. Czaja K, Sacher B, Bialek M, J. Therm. Anal. Catal., 67, 547, 2002
  26. Park HW, Chung JS, Baeck SH, Song IK, J. Mol. Catal. A-Chem., 255, 69, 2006
  27. Hosoda D, Polym. J., 20, 383, 1988