Issue
Korean Journal of Chemical Engineering,
Vol.24, No.2, 265-271, 2007
Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter
In order to improve bacterial cellulose (BC) production yield by increasing the cell density, a new fermentation system using a spin filter was developed and its performance characteristics were tested. Fermentations were carried out in a fermenter equipped with a 6 flat-blade turbine impeller and a spin filter consisting of a cylinder surrounded by stainless steel mesh and whose stainless steel bottom was attached to the agitator shaft. This new fermentation assembly was tested under different experimental conditions for BC production by Gluconacetobacter hansenii PJK. In periodical perfusion culture without pH control, the BC production and the total cell mass increased with the culture time to 3.07 and 5.65 g/L, respectively, at 140 h of cultivation. The BC production was also tested at adjusted pH and pH 5 was found optimum for maximum BC production. At pH 5, in periodical perfusion culture, the BC production and the total cell mass reached to 4.57 and 11.52 g/L, respectively, after 140 h of cultivation. This amount of BC production was 2.9 times higher than that obtained in a conventional jar fermenter. The productivity improved and was 0.044 g/L·h at 68 h of cultivation.
[References]
  1. Delmer DP, Amor Y, Plant Cell, 7, 987, 1995
  2. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M, J. Mater. Sci., 24, 3141, 1989
  3. Cannon RE, Anderson SM, Crit. Rev. Microbiol., 17, 435, 1991
  4. Embuscado ME, Marks JS, BeMiler JN, Food Hydrocolloids, 8, 419, 1994
  5. Klemm D, Schumann D, Udhard U, Marsch S, Prog. Polym. Sci, 26, 1561, 2001
  6. Fontana JD, De Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, De Souza SJ, Narcisco GP, Bichara JA, Farah LFX, Appl. Biochem. Biotechnol., 24/25, 253, 1990
  7. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P, Polym. Degrad. Stabil., 59, 93, 1998
  8. Schramm M, Hestrin S, J. Gen. Microbiol., 11, 123, 1954
  9. Park JK, Park YH, Jung JY, Biotechnol. Bioprocess Eng., 8, 83, 2003
  10. Park JK, Jung JY, Park YH, Biotechnol. Lett., 25(24), 2055, 2003
  11. Park JK, Jung JY, Park YH, Biotechnol. Bioprocess Eng., 9, 383, 2004
  12. Jung JY, Park JK, Chang HN, Enzyme Microb. Technol., 37, 347, 2005
  13. Herbert D, in Continuous culture of microorganisms, Monograph No. 12, Society of Chemical Industries, London, 1961
  14. Rogers PL, Lee KJ, Tribe DE, Process Biochem., 15, 7, 1980
  15. Cheryan M, Mehaia MA, Process Biochem., 19, 204, 1984
  16. Chaudhary DS, Vigneswaran S, Ngo HH, Shim WG, Moon H, Korean J. Chem. Eng., 20(6), 1054, 2003
  17. Kim DJ, Ahn DH, Lee DI, Korean J. Chem. Eng., 22(1), 85, 2005
  18. Margaritis A, Wilke CR, Biotechnol. Bioeng., 20, 727, 1978
  19. Valla S, Kjosbakken J, J. Gen. Microbiol., 128, 1401, 1981
  20. Gabe DR, J. Appl. Electrochem., 13, 3, 1983
  21. Du Toit WJ, Pretorius IS, Ann. Microbiol., 52, 155, 2002
  22. Chao Y, Mitarai M, Sugano Y, Shoda M, Biotechnol. Prog., 17, 781, 2001
  23. Ishida T, Mitarai M, Sugano Y, Shoda M, Biotechnol. Bioeng., 83(4), 474, 2003
  24. Coucheron DH, J. Bacteriol., 173, 5723, 1991
  25. Krystynowicz A, Koziol/kiewicz M, Wiktorowska-Jezierska A, Bielecki S, Klemenska E, Masny A, Plucienniczak A, Acta Biochim. Pol., 52, 691, 2005