Issue
Korean Journal of Chemical Engineering,
Vol.24, No.2, 239-245, 2007
Micellar enhanced ultrafiltration and activated carbon fibre hybrid processes for copper removal from wastewater
Several series of experiments were conducted to investigate copper removal from artificial suspension in micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes. Sodium dodecyl sulphate (SDS) was used as a surfactant. Copper removal increased with the increase of molar ratio of copper to SDS, operating retentate pressure and initial permeate flux. Permeate flux decreased with the increase of molar ratio of copper to SDS. Specific and relative fluxes declined, respectively, with the increase of retentate pressure and initial permeate flux. Based on removal efficiency and permeate flux, initial permeate flux of 1.05 m3/m2/day, copper to SDS molar ratio of 1 : 30 (9.44 mM of SDS), and operating retentate pressure of 1.4 bar were found to be the optimum operating parameters for 0.5 mM or less initial copper concentration. Average copper removal at the optimised condition was 98% and the corresponding permeate copper concentration was less than 1 mg/L. Adsorptive capacity of activated carbon fibre (ACF) for SDS was 170 mg/g. Langmuir isotherm equation gives a better fit with the experimental results compared to the Freundlich isotherm equation. Overall SDS removal efficiency of two sets of ACF unit in series was 85%.
[References]
  1. Madoni P, Davoli D, Gorbi G, Vescovi L, Water Res., 30, 135, 1996
  2. Jegatheesan V, Lee SH, Visvanathan C, Shu L, Marzella M, Environ. Eng. Res., 4(4), 283, 1999
  3. Tung CC, Yang YM, Chang CH, Maa JR, Waste Manage., 22, 695, 2002
  4. Baek K, Cho HJ, Yang JW, J. Hazard. Mater., B99, 303, 2003
  5. Bohdziewicz J, Bodzek M, Wasik E, Desalination, 121(2), 139, 1999
  6. Purkait MK, Gupta SD, De S, J. Colloid Interface Sci., 207, 459, 2004
  7. Chai XJ, Chen GH, Yue PL, Mi YL, J. Membr. Sci., 123(2), 235, 1997
  8. Baek K, Yang JW, J. Hazard. Mater., B108, 119, 2004
  9. Gzara L, Dhahbi M, Desalination, 137(1-3), 241, 2001
  10. Liao BQ, Bagley DM, Kraemer HE, Leppard GG, Liss SN, Water Environ. Res., 76, 425, 2004
  11. Juang RS, Xu YY, Chen CL, J. Membr. Sci., 218(1-2), 257, 2003
  12. Park SJ, Yoon HH, Song SK, Korean J. Chem. Eng., 14(4), 233, 1997
  13. Gander M, Jefferson B, Judd S, Sep. Purif. Technol., 18(2), 119, 2000
  14. Nagakoa H, Ueda S, Miya A, Water Sci. Technol., 38(4), 497, 1998
  15. Shon HK, Vigneswaran S, Kim IS, Cho J, Ngo HH, J. Membr. Sci., 234(1-2), 111, 2004
  16. Jarusutthirak C, Amy G, Water Sci. Technol., 43, 225, 2001
  17. Koyuncu I, Kural E, Topacik D, Water Sci. Technol., 43, 233, 2001
  18. Stephan W, Noble RD, Koval CA, J. Membr. Sci., 99(3), 259, 1995
  19. Kweon JH, Lawler DF, Water Res., 38, 4164, 2004
  20. Gagliardo P, Adham S, Trusell R, Water Sci. Technol., 43(10), 219, 2001
  21. Shin H, Kang S, Water Sci. Technol., 47, 139, 2002
  22. Bouhabila EH, Ben Aim R, Buisson H, Desalination, 118(1-3), 315, 1998
  23. Gan Q, Resour. Conserv., 27, 14, 1999
  24. Kim JH, Wu SH, Pendleton P, Korean J. Chem. Eng., 22(5), 705, 2005
  25. Baek K, Yang JW, Desalination, 167(1-3), 101, 2004
  26. Ghosh G, Bhattacharya PK, Chem. Eng. J., 119(1), 45, 2006
  27. Lee SH, Environ. Eng. Res., 6(4), 191, 2001
  28. Lee SH, Jang JH, Environ. Eng. Res., 18(2), 137, 2004