Issue
Korean Journal of Chemical Engineering,
Vol.24, No.1, 72-78, 2007
Degradation of azo dye by an electroenzymatic method using horseradish peroxidase immobilized on porous support
An electroenzymatic process is an interesting approach that combines enzyme catalysis and electrode reactions. Degradation of orange II by an electroenzymatic method using horseradish peroxidase (HRP) bound on inexpensive and stable inorganic beads was studied in a continuous electrochemical reactor with in situ generation of hydrogen peroxide. HRP was immobilized on Celite®R-646 as a porous support with 2% aqueous glutaraldehyde (GA), while the protein and activity yield were 3.6 mg protein and 5,280 U per g Celite, respectively. Based on a parametric study, the operating conditions were chosen, and over 90% of the degradation efficiency of orange II was maintained during continuous operation for 36 hr. From the results of GC/MS analysis, degradation products were identified and a possible breakdown pathway of orange II was also proposed. This study shows the feasibility of an electroenzymatic process to degrade azo dye compounds in wastewater.
[References]
  1. Bard AJ, Faulkner LR, Electrochemical methods: Fundamentals and applications, 2nd Ed. Wieley, 2000
  2. Bauer C, Jacques P, Kalt A, J. Photochem. Photobiol. A-Chem., 140, 87, 2001
  3. Brown DH, Hitz HR, Schafer L, Chemosphere, 10, 245, 1981
  4. Brown MA, DeVito SC, Environ. Sci. Technol., 23, 249, 1993
  5. Cabral JMS, Kennedy JF, Covalent and coordination immobilization of proteins, From: Protein immobilization - fundamentals and applications, Ed by: Taylor, R.F. Marcel Dekker, INC., New York, NY, pp. 73-138, 1991
  6. Cao JS, Wei LP, Haung QG, Wang LS, Han SK, Chemosphere, 38, 565, 1999
  7. Cardosi MF, Covalent immobilization of enzymes to graphitic particles, From: Methods in Biotechnology - Immobilization of Enzymes and Cells, Edited by: Bickerstaff, G. F. Humana Press Inc., Totowa, NJ, pp. 217-227, 1997
  8. Choi JW, Song HK, Lee W, Koo KK, Han C, Na BK, Korean J. Chem. Eng., 21(2), 398, 2004
  9. Chivukula M, Spadaro T, Renganathan V, Biochem., 34, 7765, 1995
  10. Daneshvar N, Ashassi-Sorkhabi H, Tizpar A, Sep. Purif. Technol., 31, 153, 2003
  11. Haung MT, Miwa GT, Lu AYH, J. Biol. Chem., 254, 3930, 1979
  12. Janolino VG, Swaisgood HE, Biotechnol. Bioeng., 24, 1069, 1982
  13. Kim GY, Moon SH, Korean J. Chem. Eng., 22(1), 52, 2005
  14. Kim GY, Lee KB, Cho SH, Shim J, Moon SH, J. Hazard. Matt., B126, 183, 2005
  15. Kosaka K, Yamada H, Matsui S, Echigo S, Shishida K, Environ. Sci. Technol., 32, 3821, 1998
  16. Kulla HG, Klausener F, Meyer U, Ludeke B, Leisinger T, Arch. Microbiol., 135, 1, 1983
  17. Lee KB, Gu MB, Moon SH, J. Chem. Technol. Biotechnol., 76, 1, 2001
  18. Lee KB, Electronenzymatic process for veratryl alcohol oxidation and degradation of 2,4,6-trinitrotoluene, Thesis for degree of Ph.D., Dep.Environ. Sci. & Eng., K-JIST, 2002
  19. Lee KB, Gu MB, Moon SH, Water Res., 37, 983, 2003
  20. Na YS, Kim DH, Lee CH, Lee SW, Park YS, Oh YK, Park SH, Song SK, Korean J. Chem. Eng., 21(2), 430, 2004
  21. Nam S, Tratnyek PG, Water Res., 34, 1837, 2000
  22. Paszczynski A, Pastigrigsby MB, Goszczynski S, Crawford RL, Crawford DL, Appl. Environ. Microbiol., 58, 3598, 1992
  23. Pina DG, Shnyrova AV, Gavilanes F, Rodriguez A, Leal F, Roig MG, Sakharov IY, Zhadan GG, Villar E, Shnyrov VL, Eur. J. Biochem., 268, 120, 2001
  24. Shuler ML, Kargi F, Bioprocess engineering - basic concepts, Prentice Hall PTR, Englewood Cliffs, NJ, pp 58-102, 1992
  25. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Prevenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klent DC, Anal. Biochem., 150, 76, 1985
  26. Spadaro JT, Gold M, Renganathan V, Appl. Environ. Microbiol., 58, 2397, 1992
  27. Spadaro JT, Isabelle L, Renganathan V, Environ. Sci. Technol., 28, 1389, 1994
  28. Stylidi M, Kondarides DI, Verykios XE, Appl. Catal. B: Environ., 40(4), 271, 2003
  29. Vaidya AA, Datye KV, Colourage, 14, 3, 1982
  30. Vasudevan PT, Li LO, Appl. Biochem. Biotechnol., 60, 73, 1995
  31. Zhang SJ, Yu HQ, Li QR, Chemosphere, 61, 1003, 2005
  32. Zheng LY, Xiao YL, Korean J. Chem. Eng., 21(1), 201, 2004