Issue
Korean Journal of Chemical Engineering,
Vol.24, No.1, 1-10, 2007
Prediction of thermal conductivities of oxygen, nitrogen and carbon dioxide at the moderate density regime via semi-empirical assessment
Thermal conductivities coefficients for gaseous state of N2, O2 and CO2 at zero density are determined by the inversion technique. The Lennard-Jones 12-6 (LJ 12-6) potential energy function is used as the initial model potential required by the technique. The Wang Chang-Uhlenbeck-de Boer (WCUB) approach of the kinetic theory of gases has been used for calculating the contribution of molecular degree of freedom to the thermal conductivity of N2, O2 and CO2. Also, the initial density dependence of gaseous thermal conductivity according to the Rainwater-Friend theory, which was given by Najafi et al., has been considered for N2, O2 and CO2.
[References]
  1. An J, Kim H, Korean J. Chem. Eng., 22(1), 103, 2005
  2. Amoros A, Maseo MJ, Villar E, Int. J. Thermophys., 13, 907, 1992
  3. Austin JW, Dominick P, Smith EB, Tindell AR, Wells BH, Mol. Phys., 52, 1393, 1984
  4. Bae SY, Cho DH, Kim HT, Kumazawa H, Korean J. Chem. Eng., 11(2), 127, 1994
  5. Bae SY, Kim HT, Kumazawa H, Korean J. Chem. Eng., 11(3), 211, 1994
  6. Barker JA, Fock W, Smith F, Phys. Fluids, 7, 897, 1964
  7. Bich E, Vogel E, “Initial density dependence of transport properties” in Transport Properties of Fluids (Their Correlation, Prediction and Estimations), Edited by J. Millat, J. H. Dymond and C. A. Nieto de Castro, Cambridge University Press, Cambridge, Sec. 5.2, 72, 1996
  8. Bird BR, Stewart WE, Lightfoot EN, Transport phenomena, Wiley International Edition, New York, Chapter 8, 1960
  9. Boushehri A, Bzowski J, Kestin J, Mason EA, J. Phys. Chem. Ref Data, 16, 445, 1987
  10. Bogolubov GNN, in Studies in statistical mechanics, vol. 7, Edited by J. de Boer and G. E. Uhlenbeck, North-Holland, Amsterdam, 5, 1962
  11. Brush SG, The kinetic theory of gases, Vol. 1, Imperial College Press, Oxford, 2003
  12. Buchnan JL, Turner PR, Numerical methods and analysis, McGraw-Hill, New York, 471, 1992
  13. Bzowski J, Kestin J, Mason EA, Uribe FJ, J. Phys. Chem. Ref Data, 19, 1179, 1990
  14. Choh ST, Uhlenbeck GE, The kinetic theory of phenomena in dense gases, University of Michigan, Michigan, 1958
  15. Clenshaw CW, Curtis AR, Numer. Meth., 2, 197, 1960
  16. Conte SD, de Boor C, Elementary numerical analysis, third Edition, Mc Graw Hill, New York, 303, 1980
  17. Cohen EGD, in Statistical mechanics of equilibrium and non-equilibrium processes, Edited by J. Meixner, North-Holland, Amsterdam, 140, 1965
  18. Cumming PT, Evans DJ, Ind. Eng. Chem. Res., 31, 1237, 1992
  19. Dorn WS, Mc Cracken DD, Numerical methods with fortran IV case studies, John-Wiley, New York, 244, 1972
  20. Nasrabad AE, Deiters UK, J. Chem. Phys., 119(2), 947, 2003
  21. Nasrabad AE, Laghaei R, Deiters UK, J. Chem. Phys., 121(13), 6423, 2004
  22. Nasrabad AE, Laghaei R, Eu BC, J. Phys. Chem. B, 109(16), 8171, 2005
  23. Eskandari Nasrabad A, Laghaei R, Eu BC, J. Chem. Phys., 124, 84506, 2006
  24. Erpenbeck JJ, Physica, 118A, 144, 1983
  25. Ghayeb Y, Najafi B, Moeini V, Parsafar GA, High Temp.-High Press., 35, 217, 2003
  26. Haghighi B, Fathabadi M, Papari MM, Fluid Phase Equilib., 203(1-2), 205, 2002
  27. Hill TL, An introduction to statistical thermodynamics, Wiley, New York, 1960
  28. Hill TL, Thermodynamics of small systems, Wiley, New York, 1960
  29. Hirschfelder JO, Curtis CF, Bird RB, Molecular theory of gases and liquids, John-Wiley, New York, Chapter 7, 1964
  30. Hornbeck RW, Numerical methods, Prentice-Hall, New Jersey, 293, 1975
  31. Hussaindokht MR, Haghighi B, Bozorgmehr MR, Korean J. Chem. Eng., “A comparison among three equation of state in predicting the solubility of some solids in super critical carbon dioxide,” Korean J. Chem. Eng., (2006) Accepted for publication, 2006
  32. Jang JG, Park HB, Lee YM, Korean J. Chem. Eng., 20(2), 375, 2003
  33. Kang SP, Lee H, Lee YW, Lee YY, Korean J. Chem. Eng., 12(5), 535, 1995
  34. Kang SY, Sangani AA, Korean J. Chem. Eng., 19(3), 363, 2002
  35. Kirkwood JG, Oppenheim I, Chemical thermodynamics, Wiley, New York, 1960
  36. Kwon YJ, Lee JY, Kim KC, Korean J. Chem. Eng., 14(3), 184, 1997
  37. Kwon YJ, Lee WG, Korean J. Chem. Eng., 22(3), 452, 2005
  38. Neufeld PD, Aziz RA, Comput. Phys. Commun., 3, 269, 1972
  39. Laesecke A, Krauss R, Stephan K, Wagner W, J. Phys. Chem. Ref Data, 19, 1089, 1990
  40. Laghaei R, Nasrabad AE, Eu BC, J. Phys. Chem. B, 109(12), 5873, 2005
  41. Laghaei R, Nasrabad AE, Eu BC, J. Phys. Chem. B, 109(45), 21375, 2005
  42. Laghaei R, Eskandari Nasrabad A, Eu BC, J. Chem. Phys., 123, 234507, 2005
  43. Laghaei R, Eskandari Nasrabad A, Eu BC, J. Chem. Phys., 124, 154502, 2006
  44. Maghari A, Yeganegi S, J. Phys. Soc. Jpn., 70, 3261, 2000
  45. Maghari A, Yeganegi S, J. Phys. Soc. Jpn., 69, 1389, 2000
  46. Mason EA, Uribe FJ, “The corresponding-states principle: Dilute gases,” in Transport Properties of Fluids (Their Prediction, Estimation and Correlations), Edited by Millat J., Dymond J. H., Nieto de Castro C.A., Cambridge University Press, Cambridge, 250, 1996
  47. Mc Quarrie DA, Statistical mechanics, Harper & Row, New York, 1973
  48. Maitland GC, Vesovic V, Wakeham WA, 8th Proc. Symp. Thermophys. Prop.(1), 184, 1982
  49. Maitland GC, Vesovic V, Wakeham WA, Mol. Phys., 54, 301, 1985
  50. Maitland GC, Mustafa M, Vesovic V, Wakeham WA, Mol. Phys., 57, 1015, 1986
  51. McCourt FRW, “Status of kinetic theory,” in Status and Future Developments in the Study of Transport Properties, W.A. Wakeham, A. S. Dickinson, F. R.W. McCourt, V. Vesovic (Eds.), NATO ASI, Kluwer, New York, 117, 1992
  52. Millat J, Mustafa M, Ross M, Wakeham WA, Zalaf M, Physica A, 145, 461, 1987
  53. Monchick L, Mason EA, J. Chem. Phys., 35, 1676, 1961
  54. Mourtis FM, Rummens FHA, Can. J. Chem., 55, 3007, 1977
  55. Chapman S, Cowling TG, The mathematical theory of non-uniform gases, Third Edition, Cambridge University Press, Cambridge, 1964
  56. Najafi B, Mason EA, Kestin J, Physica A, 119A, 387, 1983
  57. O’Hara H, Smith FJ, J. Comput. Phys., 5, 328, 1970
  58. O’Hara H, Smith FJ, Comput. Phys. Commun., 2, 47, 1971
  59. Oh SK, Sim CH, Korean J. Chem. Eng., 19(5), 843, 2002
  60. Oh SK, Park KH, Korean J. Chem. Eng., 22(2), 268, 2005
  61. Oh SK, Korean J. Chem. Eng., 22(6), 949, 2005
  62. Oh ES, Korean J. Chem. Eng., 21(2), 494, 2004
  63. Pachmer J, Handbook of numerical analysis in application, Mc Graw Hill, New York, pp. 140-142 and pp. 136-137, 1984
  64. Press WH, Teukolsky SA, Vetterling WT, Flannery BP, Numerical recipes in FORTRAN: The art of scientific computing, Second Edition, Cambridge University Press, Cambridge, 1994
  65. Rigby M, Smith EB, Wakeham WA, Maitland GC, The forces between molecules, Clarendon, Oxford, 1992
  66. Shin GS, Park JS, Kwon YJ, Korean J. Chem. Eng., 15(6), 603, 1998
  67. Smith IM, Programming in FORTRAN 90: A first course for engineers and scientists, John-Wiley, 1995
  68. Smith EB, “The determination of intermolecular forces by data-inversion methods,” in Structure and dynamic of weakly bonded molecular complexes, NATO ASI Series, Ser. C, 212, Kluwer, New York, 373, 1987
  69. Smith EB, Tindell AR, Wells BH, High Temp.-High Press., 17, 53, 1985
  70. Stephan K, Krauss R, Laesecke A, J. Phys. Chem. Ref Data, 16, 993, 1987
  71. Taxman N, Phys. Rev., 110, 1235, 1958
  72. Tolman RC, The principles of statistical mechanics, Dover edition, New York, 1979
  73. Maitland GC, Vesovic V, Wakeham WA, Mol. Phys., 54, 287, 1985
  74. Trusler JPM, Sci. Prog., 75, 51, 1991
  75. Vasserman AA, Khasilev PI, High Temp.-High Press., 24, 475, 1992
  76. Vesovic V, Wakeham WA, Mol. Phys., 62, 1239, 1987
  77. Wakeham WA, “Traditional transport properties,” in Status and Future Developments in the Study of Transport Properties, W.A. Wakeham, A. S. Dickinson, F. R.W. McCourt, V. Vesovic (Eds.), NATO ASI, Kluwer, New York, 29, 1992
  78. Wang Chang CS, Uhlenbeck GE, de Boer J, “The heat conductivity and viscosity of polyatomic gases,” in Studies in statistical mechanics, Edited by J. de Boer and G. E. Uhlenbeck,vol. 2, North-Holland, Amsterdam, 1964
  79. Wang Chang CS, Uhlenbeck GE, de Boer J, “The heat conductivity and viscosity of polyatomic gases,” in Studies in Statistical mechanics, Edited by J. de Boer and G. E. Uhlenbeck, vol. 2, North-Holland, Amsterdam, 1964
  80. Xiufeng L, Xi L, Int. J. Theor. Phys., 35, 1753, 1996
  81. Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 277, 1995
  82. Yoo KP, Kim H, Lee CS, Korean J. Chem. Eng., 12(3), 289, 1995