Issue
Korean Journal of Chemical Engineering,
Vol.23, No.4, 601-606, 2006
Modification of lipase from Candida rugosa with poly(ethylene oxide-co-maleic anhydride) and its separation using aqueous two-phase partition system
A copolymer was synthesized from polyethylene oxide (PEO) and maleic acid anhydride (MA). Number of ethylene oxide units was varied from 10 to 40. Lipase from Candida rugosa was modified through chemical bonding of MA with amino group of lipase. Degree of modification increased with a decrease in EO unit and increase in copolymer/ enzyme ratio. The relative activity of modified enzyme increased with increase in EO unit. It was more than native lipase (100%) when copolymer/enzyme weight ratio was less than 3 for all copolymers. It might be due the conformation change of the lipase molecules on modification that would have exposed the catalytic sites making them more easily accessible. At the highest DM (39%), modified lipase retained more than 50% relative activity. Partitioning of native and modified lipase was also studied by using aqueous two phase synthesized copolymer/dextran system: modified lipase (with EO 30 and 40) showed better separation than the native one. Partition coefficient increased with increase in copolymer/enzyme weight ratio.
[References]
  1. Bajpai P, Biotechnol. Prog., 15(2), 147, 1999
  2. Borgstrom B, Brockman HL, Lipases, Elsevier, New York, 1984
  3. Brady C, Metcalfe L, Slaboszewski D, Frank DL, J. Am. Oil Chem. Soc., 65, 917, 1988
  4. Chae HJ, In MJ, Kim EY, Appl. Biochem. Biotechnol., 73(2-3), 195, 1998
  5. Charusheela A, Arvind L, Enzyme Microb. Technol., 30(1), 19, 2002
  6. Cho SW, Rhee JS, Biotechnol. Bioeng., 41, 204, 1993
  7. Diamond AD, Hsu JT, Advances in Biochem. Eng. Biotech., 49, 89, 1992
  8. Dordick JS, Biocatalysis for industry, Plenum Press, New York, 1991
  9. Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, Burg B, Vriend G, J. Biotechnol., 113, 105, 2004
  10. Flory PJ, J. Chem. Phys., 9, 660, 1941
  11. Flory PJ, Principles of polymer chemistry, Cornell University Press, London, 1953
  12. Furukawa M, Kodera Y, Uemura T, Hiroto M, Matsushima A, Kuno H, Matsushita H, Inada Y, Biochem. Biophys. Res. Commun., 199, 41, 1996
  13. Goto M, Kamiya N, Miyata M, Nakashio F, Biotechnol. Prog., 10(3), 263, 1994
  14. Zheng G, Shu B, Yan S, Enzyme Microb. Technol., 32(7), 776, 2003
  15. Guo Z, Sun Y, Biotechnol. Prog., 20(2), 500, 2004
  16. Habeeb AFSF, Anal. Biochem., 14, 328, 1966
  17. Huggins ML, J. Am. Chem. Soc., 64, 1712, 1942
  18. Hwang S, Lee KT, Park JW, Min BR, Haam S, Ahn IS, Jung JK, Biochem. Eng. J., 17, 85, 2004
  19. Jensen RG, Lipids, 18, 650, 1983
  20. Jeon GJ, Hur BK, Yang JW, Korean J. Biotechnol. Bioeng., 14, 696, 1999
  21. Jeong GT, Byun KY, Lee WT, Ryu HW, Sunwoo C, Kim HS, Park DH, “Enzymatic synthesis of sorbitan methacrylate: Comparison of methacrylic acid and vinyl methacrylate,” Biochem. Eng. J., In Press, Available online
  22. Joo H, Yoo YJ, Dordick JS, Korean J. Chem. Eng., 15(4), 362, 1998
  23. Gee KB, Choi CY, Korean J. Chem. Eng., 1(1), 13, 1984
  24. Kim Y, Park K, Lee H, Jang S, Song HC, Shin HC, Park JJ, Park J, Maken S, J. Ind. Eng. Chem., 10(3), 384, 2004
  25. Koeller KM, Wong CH, Nature, 409, 232, 2001
  26. Kontkanen H, Tenkanen M, Fagerstrom R, Reinikainen T, J. Biotechnol., 108, 51, 2004
  27. Kwon DY, Rhee JS, Korean J. Chem. Eng., 1(2), 153, 1984
  28. Lee KW, Bae HA, Shin GS, Lee YH, “Purification and catalytic properties of novel enantioselective lipase from Acinetobacter sp. ES-1 for hydrolysis of (S)-ketoprofen ethyl ester,” Enzyme Microbial. Technol., In Press. Available online
  29. Lee SK, Park SW, Kim YI, Chung KH, Hong SI, Kim SW, Korean J. Chem. Eng., 19(2), 261, 2002
  30. Longo MA, Combes D, J. Chem. Technol. Biotechnol., 74(1), 25, 1999
  31. Matsumoto M, Kida K, Kondo K, J. Chem. Technol. Biotechnol., 76(10), 1070, 2001
  32. Moon HY, Kim SY, Park JW, Kajiuchi T, Korean J. Chem. Eng., 10(4), 235, 1993
  33. Nishio T, Takahashi K, Tsuzuki T, Yoshimoto T, Kodera Y, Matsushima A, Saito Y, Inada Y, J. Biotechnol., 8, 39, 1988
  34. Noel M, Combes D, J. Biotechnol., 102, 23, 2003
  35. Park CY, Ryu YW, Kim C, Korean J. Chem. Eng., 18(4), 475, 2001
  36. Park JW, Park KN, Biotechnol. Tech., 13, 49, 1999
  37. Park JW, Korean J. Chem. Eng., 12(5), 523, 1995
  38. Park J, Park K, Bioresour. Technol., 79(1), 91, 2001
  39. Park JW, Park KN, Song HC, Shin HC, J. Biotechnol., 93, 203, 2002
  40. Park K, Park J, Song H, Shin H, Park J, Ahn JS, Korean J. Chem. Eng., 19(2), 285, 2002
  41. Park SW, Kim YI, Chang KS, Kim SW, Process Biochem., 37/2, 153, 2001
  42. Reetz MT, Curr. Opin. Chem. Biol., 6, 145, 2002
  43. Salis A, Pinna M, Monduzzi M, Solinas V, J. Biotechnol., 119, 291, 2005
  44. Schmid A, Dordick JS, Hauer B, Wubbolts M, Witholt B, Nature, 409, 258, 2001
  45. Wang YH, Hsieh YL, J. Polym. Sci. A: Polym. Chem., 42(17), 4289, 2004
  46. Won K, Kim S, Kim KJ, Park HW, Moon SJ, Process Biochem., 40, 2149, 2005
  47. Wu JC, Song BD, Process Biochem., 37, 1229, 2002
  48. Wu JC, He ZM, Yao CY, Yu KT, J. Chem. Technol. Biotechnol., 76(9), 949, 2001
  49. Yadav GD, Lathi PS, Biochem. Eng. J., 16, 245, 2003
  50. Moon-Young Y, Lee SH, Cheong CS, Park JK, Enzyme Microb. Technol., 35(6-7), 574, 2004