Issue
Korean Journal of Chemical Engineering,
Vol.23, No.3, 505-511, 2006
Chemical structure and surface morphology of plasma polymerized-allylamine film
In this study, we conducted the plasma polymerization of allylamine using radio frequency (RF) glow discharge with continuous wave (CW) in order to make an organic thin film with an amine functional group retained. Allylamine as a monomer was deposited on a glass in a bell-jar type plasma reactor and polymerized to plasma-polymerized allylamine (PPAa). The parameter to control the property of plasma polymer was input power at other conditions remaining constant. The chemical structure and the surface morphology of plasma-polymerized allylamine (PPAa) film were characterized by contact angle measurement, Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM). The property of PPAa film was highly dependent upon the plasma input power. The input power, which determines the plasma density, results in a property of PPAa thin film such as hydrophilicity, high retention of functionality of PPAa’s surface. Surface energy calculated by contact angle measurement indicated that increasing input power (from 30W to 90W) decreased the hydrophilic property of PPAa due to loss of amine functional group and high cross-linking. The increase of the energy causes the films to be harder. ATR-FTIR and XPS results showed that high input energy fragmented the amine group from monomer with increasing nitrogen atomic content and nitrile group. The high retention of amine groups seems mainly favored by low input power (<30 W). From thickness measurement using α-stepper, the deposition rates were 0.43, 0.83, 1.11, 1.37 nm/s at 30, 50, 70, 90W, respectively. The change of surface morphology of plasma-polymerized thin films was investigated after soaking the PPAa film into ethanol. Due to weak adhesion with substrate and internal stress in plasma polymer film, the surface morphology of PPAa film revealed some irregular network pattern.
[References]
  1. Aizawa H, Kurosawa S, Kobayashi K, Kashima K, Hirokawa T, Yoshimi Y, Yoshimoto M, Hirotsu T, Miyake J, Tanaka H, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 12, 49, 2000
  2. Shard AG, Whittle JD, Beck AJ, Brookes PN, Bullett NA, Talib RA, Mistry A, Barton D, McArthur SL, J. Phys. Chem. B, 108(33), 12472, 2004
  3. Anma H, Yoshimoto Y, Warashina M, Hatanaka Y, Appl. Surf. Sci., 175, 484, 2001
  4. Beck AJ, Candan S, France RM, Jones FR, Short RD, Plasmas Polym., 3, 97, 1998
  5. Beck AJ, Candan S, Short RD, Goodyear A, Braithwaite NSJ, J. Phys. Chem. B, 105(24), 5730, 2001
  6. Biederman H, Slavinska D, Surf. Coat. Technol., 125, 371, 2000
  7. Biederman H, Hlidek P, Zemek J, Slavinska D, Jezek J, Zakouril P, Glosik J, Vacuum, 46, 1413, 1995
  8. Bogaerts A, Neyts E, Gijbels R, van der Mullen J, Spectroc. Acta Pt. B-Atom. Spectr., 57, 609, 2002
  9. Bonizzoni G, Vassallo E, Vacuum, 64, 327, 2002
  10. Chu PK, Chen JY, Wang LP, Huang N, Mater. Sci. Eng. R-Rep., 36, 143, 2002
  11. da Silva MLP, Tan IH, Nascimento Filho AP, Galeazzo E, Jesus DP, Sens. Actuators B-Chem., 91, 362, 2003
  12. Favia P, DAgostino R, Surf. Coat. Technol., 98, 1102, 1998
  13. Gancarz I, Bryjak J, Bryjak M, Po niak G, Eur. Polym. J., 39, 1615, 2003
  14. Garrison MD, Luginbuhl R, Overney RM, Ratner BD, Thin Solid Films, 352(1-2), 13, 1999
  15. Hamerli P, Weigel T, Groth T, Paul D, Biomaterials, 24, 3989, 2003
  16. Han LC, Rajeshwar K, Timmons RB, Langmuir, 13(22), 5941, 1997
  17. Hynes AM, Shenton MJ, Badyal JP, Macromolecules, 29(12), 4220, 1996
  18. Ihara T, Kawamura S, Kiboku M, Iriyama Y, Prog. Org. Coat., 31, 133, 1997
  19. Kettle AP, Beck AJ, OToole L, Jones FR, Short RD, Compos. Sci. Technol., 57, 1023, 1997
  20. Kim J, Park H, Jung D, Kim S, Anal. Biochem., 313, 41, 2003
  21. Kuhn G, Retzko I, Lippitz A, Unger W, Friedrich J, Surf. Coat. Technol., 142, 494, 2001
  22. Kurosawa S, Aizawa H, Miyake J, Yoshimoto M, Hilborn J, Talib ZA, Thin Solid Films, 407(1-2), 1, 2002
  23. Mar MN, Ratner BD, Yee SS, Sens. Actuators B-Chem., 54, 125, 1999
  24. Martinu L, Poltras D, J. Vac. Sci. Technol. A, 18(6), 2619, 2000
  25. Muguruma H, Karube I, Tren. Anal. Chem., 18, 62, 1999
  26. Muguruma H, Hiratsuka A, Karude I, Anal. Chem., 72, 2671, 2000
  27. Otoole L, Beck AJ, Short RD, Macromolecules, 29(15), 5172, 1996
  28. Poll HU, Schreiter S, Surf. Coat. Technol., 93, 105, 1997
  29. Retzko I, Friedrich JF, Lippitz A, Unger WES, J. Electron Spectrosc. Relat. Phenom., 121, 111, 2001
  30. Rinsch CL, Chen XL, Panchalingam V, Eberhart RC, Wang JH, Timmons RB, Langmuir, 12(12), 2995, 1996
  31. Russell SP, Weinkauf DH, Polymer, 42(7), 2827, 2001
  32. Schonherr H, van Os MT, Forch R, Timmons RB, Knoll W, Vancso GJ, Chem. Mater., 12, 3689, 2000
  33. Shi FF, Surf. Coat. Technol., 82, 1, 1996
  34. Shirtcliffe N, Thiemann P, Stratmann M, Grundmeier G, Surf. Coat. Technol., 142, 1121, 2001
  35. Szili E, Thissen H, Hayes JP, Voelcker N, Biosens. Bioelectron., 19, 1395, 2004
  36. van Os MT, Menges B, Foerch R, Vancso GJ, Knoll W, Chem. Mater., 11, 3252, 1999
  37. Wang JH, Chen JJ, Timmons RB, Chem. Mater., 8, 2212, 1996
  38. Yasuda H, Plasma Polymerization, Academic Press, Orlando, FL, 1985
  39. Zajickova L, Rudakowski S, Becker HW, Meyer D, Valtr M, Wiesemann K, Thin Solid Films, 425(1-2), 72, 2003
  40. Zenkiewicz M, J. Adhes. Sci. Technol., 15, 1769, 2001
  41. Zhang J, Feng XF, Xie HK, Shi YC, Pu TS, Guo Y, Thin Solid Films, 435(1-2), 108, 2003