Issue
Korean Journal of Chemical Engineering,
Vol.23, No.3, 447-454, 2006
An extension of the group contribution method for estimating thermodynamic and transport properties. Part IV. Noble gas mixtures with polyatomic gases
Earlier work on the group contribution method applied to Kihara potentials is extended to noble-polyatomic gas mixtures for the calculation of second virial cross coefficients, mixture viscosities and binary diffusion coefficients of dilute gas state using a single set of gas group parameters. Previously estimated parameter values for pure gas groups by our work [Oh, 2005; Oh and Sim, 2002; Oh and Park, 2005] were used. Assuming that noble-polyatomic gas mixtures examined are chemically dissimilar, a group binary interaction coefficient, kij, gc, was assigned to each interaction between noble-polyatomic gas groups, and 25 group binary interaction parameter values (kHe-H2, gc, kHe-N2, gc, kHe-CO, gc, kHe-CO2, gc, kHe-O2, gc, kHe-NO, gc, kHe-N2O, gc; kNe-H2, gc, kNe-N2, gc, kNe-CO, gc, kNe-CO2, gc, kNe-O2, gc; kAr-H2, gc, kAr-N2, gc; kAr-CO, gc, kAr-CO2, gc, kKr-O2, gc; kKr-H2, gc, kKr-N2, gc, kKr-CO, gc, kAr-CO2, gc; kXe-H2, gc, kXe-N2, gc, kXe-CO, gc, kXe-CO2, gc) were determined by fitting second virial cross coefficients data. Application of the model shows that second virial cross coefficient data are represented with good results comparable to values predicted by means of the corresponding states correlation. Reliability of the model for mixture viscosity predictions is proved by comparison with the Lucas method. And prediction results of binary diffusion coefficients are in excellent agreement with literature data and compared well with values obtained by means of the Fuller method. Improvements of the group contribution model are observed when group binary interaction coefficients are adopted for mixture property predictions.
[References]
  1. Bondi A, J. Phys. Chem., 68(3), 441, 1964
  2. Chapman S, Cowling TG, The mathematical theory of nonuniform gases, 3rd ed., Cambridge University Press, New York, 1970
  3. Campbell SW, Fluid Phase Equilib., 47, 47, 1989
  4. Dymond JH, Smith EB, The virial coefficients of pure gases and mixtures - a critical compilation, Clarendon Press, Oxford, 1980
  5. Dymond JH, Marsh KN, Wilhoit RC, Virial coefficients of pure gases and mixtures, Edited by Fenkel, M. and Marsh, K. N., Landolt-Bornstein - Group IV Physical Chemistry, 21, Springer-Verlag, Heidelberg, 2003
  6. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem., 58(5), 18, 1966
  7. Gavril D, Atta KR, Karaiskakis G, Fluid Phase Equilib., 218(2), 177, 2004
  8. Giddings JC, Seager SL, Ind. Eng. Chem. Fundam., 1, 277, 1962
  9. Haghighi B, Fathabadi M, Papari MM, Fluid Phase Equilib., 203(1-2), 205, 2002
  10. Hellemans JM, Kestin J, Ro ST, J. Chem. Phys., 57(9), 4038, 1972
  11. Hirschfelder JO, Curtiss CF, Bird RB, Molecular theory of gases and liquids, Wiley, New York, 1954
  12. Holsen JN, Strunk MR, Ind. Eng. Chem. Fundam., 3, 143, 1964
  13. IMSL, IMSL STAT/LIBRARY: Regression, IMSL, Houston, 1994
  14. Kestin J, Kobayashi Y, Wood RT, Physica, 32, 1065, 1966
  15. Kestin J, Yata J, J. Chem. Phys., 49(11), 4780, 1968
  16. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(8), 4036, 1972
  17. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(12), 5837, 1972
  18. Kestin J, Ro ST, Ber. Bunsen-Ges. Phys. Chem., 20, 20, 1974
  19. Kestin J, Ro ST, Ber. Bunsen-Ges. Phys. Chem., 86, 948, 1982
  20. Kestin J, Ro ST, Wakeham WA, Ber. Bunsen-Ges. Phys. Chem., 88, 450, 1984
  21. Kihara T, Intermolecular forces, Wiley, New York, 1978
  22. Lide DR, Handbook of chemistry and physics, 76th Ed., CRC Press, 1995
  23. Lucas K, Phase equilibria and fluid properties in the chemical industry, Dechema, Frankfurt, 1980
  24. Mason EA, Marrero TR, Advances in Atomic and molecular physics, Edited by Bates, D. R. and Esterman, I., Academic Press, NY, Vol. 6, 1970
  25. Vannhu N, Deiters UK, Fluid Phase Equilib., 118(2), 153, 1996
  26. Oh SK, A group interaction model for second virial coefficients of pure gases and mixtures, M.S. Thesis, University of S. Florida, Tampa, 1989
  27. Oh SK, Campbell SW, Fluid Phase Equilib., 129(1-2), 69, 1997
  28. Oh SK, Sim CH, Korean J. Chem. Eng., 19(5), 843, 2002
  29. Oh SK, Park KH, Korean J. Chem. Eng., 22(2), 268, 2005
  30. Oh SK, Korean J. Chem. Eng., 22(6), 949, 2005
  31. Poling BE, Prausnitz JM, OConnell JP, The properties of gases and liquids, 5th ed., McGraw Hill, NY, 2000
  32. Schramm B, Muller W, Ber. Bunsenges. Physik. Chem., 86, 110, 1982
  33. Seager SL, Geertson LR, Giddings JC, J. Chem. Eng. Data, 8, 168, 1963
  34. Saxena SC, Mason EA, Mol. Phys., 2, 379, 1959
  35. Trengove RD, Robjohns HL, Dunlop PJ, Ber. Bunsenges. Phys. Chem., 88, 450, 1984
  36. Tsonopoulos C, Dymond JM, Szafranski AM, Pure Appl. Chem., 61(6), 1387, 1989
  37. Tsonopoulos C, Dymond JH, Fluid Phase Equilib., 133(1-2), 11, 1997
  38. Tsonopoulos C, AIChE J., 20(2), 263, 1974
  39. Walker RE, Westenberg AA, J. Chem. Phys., 29, 1139, 1958