Issue
Korean Journal of Chemical Engineering,
Vol.22, No.6, 949-959, 2005
An Extension of the Group Contribution Method for Estimating Thermodynamic and Transport Properties. Part III. Noble Gases
Earlier work on the group contribution method applied to the Kihara potential is extended to noble gases for the estimation of second virial coefficients, dilute gas viscosities and diffusivities with a single set of gas group parameters. Group parameters are determined when second virial coefficient and viscosity data of pure gases are satisfactorily fitted within the experimental uncertainties. Parameters for gas groups (He, Ne, Ar, Kr and Xe) are found to provide good predictions of mixture properties: second virial cross coefficients, mixture viscosities, and binary diffusion coefficients. Application of the model shows that second virial coefficient data are represented with good results comparable to the values by means of the corresponding states correlation. The reliability of the present model in viscosity predictions is proved by comparison with the Lucas method. Prediction results of diffusivity are in excellent agreement with literature data and compare well with values obtained by means of the Fuller method.
[References]
  1. Bondi A, J. Phys. Chem., 68(3), 441, 1964
  2. Byrne MA, Jones MR, Staveley LAK, Trans. Faraday Soc., 64, 1747, 1968
  3. Campbell SW, Fluid Phase Equilib., 47, 47, 1989
  4. Chapman S, Cowling TG, The Mathematical Theory of Nonuni form Gases, 3rd ed., Cambridge University Press, New York, 1970
  5. Derr EL, Deal CH, Inst. Chem. Eng. Symp. Ser., 32, 44, 1969
  6. Dymond JH, Alder BJ, J. Chem. Phys., 51(1), 309, 1969
  7. Dymond JH, Smith EB, The Virial Coefficients of Pure Gases and Mixtures-A Critical Compilation, Clarendon Press, Oxford, 1980
  8. Fredenslund A, Jones RL, Prausnitz JM, AIChE J., 21(6), 1086, 1975
  9. Fuller EN, Schettler PD, Giddings JC, Ind. Eng. Chem. Fundam., 58(5), 18, 1966
  10. Georgeton GK, Teja AS, Ind. Eng. Chem. Res., 27, 657, 1988
  11. Hellemans JM, Kestin J, Ro ST, J. Chem. Phys., 57(9), 4038, 1972
  12. Hirschfelder JO, Curtiss CF, Bird RB, Molecular Theory of Gases and Liquids, Wiley, New York, 1954
  13. Holsen JN, Strunk MR, Ind. Eng. Chem. Fundam., 3, 143, 1964
  14. Humphreys AE, Mason EA, The Physics of Fluids, 13(1), 65, 1970
  15. IMSL, IMSL STAT/LIBRARY: Regression, IMSL, Houston, 1994
  16. Iwasaki H, Kestin J, Physica, 29, 1345, 1963
  17. Jin G, Walsh JM, Donahue MD, Fluid Phase Equilib., 31, 123, 1986
  18. Kalelkar AS, Kestin J, J. Chem. Phys., 52(8), 4248, 1970
  19. Kestin J, Nagashima A, J. Chem. Phys., 40(12), 3648, 1964
  20. Kestin J, Kobayashi Y, Wood RT, Physica, 32, 1065, 1966
  21. Kestin J, Yata J, J. Chem. Phys., 49(11), 4780, 1968
  22. Kestin J, Wakeham W, Watanabe K, J. Chem. Phys., 53(10), 3773, 1970
  23. Kestin J, Paykoc EE, Sengers JV, Physica, 54, 1, 1971
  24. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(8), 4036, 1972
  25. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(8), 4086, 1972
  26. kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(8), 4119, 1972
  27. Kestin J, Ro ST, Wakeham WA, J. Chem. Phys., 56(12), 5837, 1972
  28. Kestin J, Ro ST, Ber. Bunsen-Ges. Physik. Chem., 20, 20, 1974
  29. Kestin J, Ro ST, Ber. Bunsen-Ges. Phys. Chem., 86, 948, 1982
  30. Kestin J, Knierim K, Mason EA, Najafi B, Ro ST, Waldman M, J. Phys. Chem. Ref Data, 13(1), 229, 1984
  31. Kihara T, Intermolecular Forces, Wiley, New York, 1978
  32. Lide DR, Handbook of Chemistry and Physics, 76th Ed,. CRC Press, 1995
  33. Lucas K, Phase Equilibria and Fluid Properties in the Chemical Industry, Dechema, Frankfurt, 1980
  34. O'Connell JP, Prausnitz JM, Advances in Thermophysical Properties at Extreme Temperatures and Pressures, 3rd Symposium of Thermophysical Properties, ASME, New York, 1965
  35. O'Connell, J.P., Personal Communication, 1988
  36. Oh SK, A Group Interaction Model for Second Virial Coefficients of Pure Gases and Mixtures, M.S. Thesis, University of S. Florida, Tampa, 1989
  37. Oh SK, Campbell SW, Fluid Phase Equilib., 129(1-2), 69, 1997
  38. Oh SK, Sim CH, Korean J. Chem. Eng., 19(5), 843, 2002
  39. Oh SK, Park KH, Korean J. Chem. Eng., 22(2), 268, 2005
  40. Poling BE, Prausnitz JM, O'Connell JP, The Properties of Gases and Liquids, 5th ed, McGraw-Hill, NY, 2000
  41. Prausnitz JM, Lichtenthaler RN, de Azevedo EG, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed,. Prentice Hall, 1999
  42. Rietveld AO, Van Itterbeek A, Van Den Berg GJ, Physica, 19, 517, 1953
  43. Rietveld AO, Van Itterbeek A, Van Den Berg GJ, Physica, 22, 785, 1956
  44. Rietveld AO, Van Itterbeek A, Velds CA, Physica, 25, 205, 1959
  45. Seager SL, Geertson LR, Giddings JC, J. Chem. Eng. Data, 8, 168, 1963
  46. Strehlow RA, J. Chem. Eng. Data, 21, 2101, 1953
  47. Strehlow RA, J. Chem. Eng. Data, 31, 519, 1959
  48. Saxena SC, Mason EA, "Thermal Diffusion and the Approach to the State in Gases: II:, Mol. Phys., 2, 379, 1959
  49. Stephan K, Lucas K, Viscosity of Dense Fluids, Plenum Press, New York, 1979
  50. Tee LS, Gotoh S, Stewart WE, Ind. Eng. Chem. Fundam., 5, 363, 1966
  51. Thornton E, Baker WAD, Proc. Phys. Soc., 80, 1171, 1962
  52. Thornton E, Proc. Phys. Soc., 77, 1166, 1960
  53. Thornton E, Proc. Phys. Soc., 76, 104, 1960
  54. Tsonopoulos C, Dymond JM, Szafranski AM, Pure Appl. Chem., 61(6), 1387, 1989
  55. Tsonopoulos C, Dymond JH, Fluid Phase Equilib., 133(1-2), 11, 1997
  56. Tsonopoulos C, AIChE J., 20(2), 263, 1974
  57. van Heijningen RJJ, Harpe JP, Beenakker JJM, Physica, 38, 1, 1968