Issue
Korean Journal of Chemical Engineering,
Vol.22, No.6, 882-888, 2005
Kinetic Analysis for Decomposition of 2,4-Dichlorophenol by Supercritical Water Oxidation
2,4-Dichlorophenol (2,4-DCP), as a halogenated model pollutant, was decomposed by using supercritical water oxidation (SCWO) in a batch reactor made of Hastelloy C-276. SCWO experiments for 2,4-DCP decomposition were performed in the range of 380-420 ℃, 230-280 bar and 0.074-0.221 mol/L H2O2. The effect of oxidant concentration on decomposition rate and efficiency was significant near the critical temperature of 380 ℃. However, the role of the oxidant concentration in the SCWO process decreased with an increase in temperature; also, excess oxidant played a key role in quite significantly decreasing the activation energy of 2,4-DCP oxidation. Variation of the reaction rate by the change of pressure was negligible even at a near critical temperature. The kinetic rate for the decomposition of 2,4-DCP in the SCWO process was well described by a simple first-order kinetic and global reaction rate model. From the SCWO experiments, the various intermediates identified with a GC/MS implied that the first reaction pathway for 2,4-DCP decomposition led to dimers such as dichlorophenoxyphenols, and the second led to single-ring and ringopening products.
[References]
  1. Armenante PM, Kafkewitz D, Lewandowski GA, Jou CJ, Water Res., 30, 681, 1999
  2. Cocero MJ, Alonso E, Sanz MT, J. Supercrit. Fluids, 24, 37, 2002
  3. Connoly JF, Chem. Eng. J., 13, 11, 1996
  4. Gopalan S, Savage PE, AIChE J., 41(8), 1864, 1995
  5. Martino CJ, Savage PE, Environ. Sci. Technol., 33, 1911, 1999
  6. Japas ML, Franck EU, Phys. Chem., 89, 1268, 1985
  7. Jianli Y, Savage PE, Environ. Sci. Technol., 34, 3191, 2000
  8. Juan RP, Lopez J, Nebot E, Martinez E, J. Hazard. Mater., 88, 95, 2001
  9. Konys J, Fodi S, Hausselt J, Schmidt H, Casal V, Corrosion, 55, 45, 1999
  10. Kritzer P, Boukis N, Dinjus E, Corrosion, 54, 824, 1998
  11. Lee G, Nunoura T, Matsumura Y, Yamamoto K, J. Supercrit. Fluids, 24, 239, 2002
  12. Lee HC, In JH, Hwang KY, Lee CH, Ind. Eng. Chem. Res., 43(13), 3223, 2004
  13. Lee HC, Kim JH, In JH, Lee CH, Ind. Eng. Chem. Res., 17, 6615, 2005
  14. Lin KS, Wang HP, Yang YW, Chemosphere, 39, 1385, 1999
  15. Martino CJ, Savage PE, Environ. Sci. Technol., 33, 1911, 1999
  16. Matsumura Y, Nunoura T, Urase T, Yamamoto K, J. Hazard. Mater., 73, 245, 2000
  17. Mitton DB, Yoon JH, Cline JA, Kim HS, Eliaz N, Latanision RM, Ind. Eng. Chem. Res., 39(12), 4689, 2000
  18. Mitton DB, Yoon JH, Latanision RM, Zairyo-to-Kankyo, 49, 130, 2000
  19. Modell M, Standard Hand-book for Hazardous Wastes Treatment and Disposal, H.M. Freeman, ED., 1986
  20. Goto R, Shiramizu D, Kodama A, Hirose T, Ind. Eng. Chem. Res., 38(11), 4500, 1999
  21. Goto M, Nada T, Kodama A, Hirose T, Ind. Eng. Chem. Res., 38(5), 1863, 1999
  22. Ormad MP, Ovelleiro JL, Kiwi J, Appl. Catal. B: Environ., 32(3), 157, 2001
  23. Kritzer P, Dinjus E, Chem. Eng. J., 83(3), 207, 2001
  24. Portela JR, Nebot E, de la Ossa EM, Chem. Eng. J., 81(1-3), 287, 2001
  25. Quan X, Shi H, Wang J, Qian Y, Chemosphere, 50, 1069, 2003
  26. Ruokang L, Phillip ES, David S, AIChE J., 39, 178, 1993
  27. Sako T, Sugeta T, Otake K, Sato M, Tsugumi M, Hiaki T, Hongo M, J. Chem. Eng. Jpn., 30(4), 744, 1997
  28. Savage PE, Yu JL, Stylski N, Brock EE, J. Supercrit. Fluids, 12(2), 141, 1998
  29. Mizuno T, Goto M, Kodama A, Hirose T, Ind. Eng. Chem. Res., 39(8), 2807, 2000
  30. Tang WZ, Huang CP, Water Res., 29, 745, 1995
  31. Uematsu M, Franf EU, J. Phys. Chem., 9, 1291, 1980