Issue
Korean Journal of Chemical Engineering,
Vol.22, No.6, 839-843, 2005
Surface Chemical Structures of CoOx/TiO2 Catalysts for Continuous Wet Trichloroethylene Oxidation
.An earlier sample of 5% CoOx/TiO2 used for the wet oxidation of TCE at 310 K for ca. 6 h has been characterized with a fresh catalyst via XRD and XPS measurements. The binding energy for Co 2p3/2 of the fresh sample appeared at 781.3 eV, which was very similar to the chemical states of CoTiOx such as Co2TiO4 and CoTiO3, whereas the spent catalyst indicated a 780.3-eV main peak for Co 2p3/2 with a satellite structure at a higher energy region. This binding energy was almost equal to that of Co3O4 among reference Co compounds used. The phase structure of Co3O4 was revealed upon XRD measurements for all the catalyst samples. Based on these XPS and XRD results, a surface chemical structure of CoOx species existing with the fresh catalyst can be proposed to be predominantly Co3O4 encapsulated completely by very thin filmlike CoTiOx consisting of Co2TiO4 and/or CoTiO3, with a tiny amount of Co3O4 particles covered partially by such cobalt titanates which may be responsible to the initial catalytic activity. Those CoTiOx overlayers on Co3O4 particles may be readily removed into the wet media within 1 h at 310 K based on our earlier study, thereby giving rapid increase in the catalytic activity for that period.
[References]
  1. Brik Y, Kacimi M, Ziyad M, Bozon-Verduraz F, J. Catal., 202(1), 118, 2001
  2. Chuang TJ, Brundle CR, Rice DW, Surf. Sci., 59, 413, 1976
  3. Drago RS, Jurczyk K, Singh DJ, Young V, Appl. Catal. B: Environ., 6(2), 155, 1995
  4. Frydman A, Castner DG, Schmal M, Campbell CT, J. Catal., 152(1), 164, 1995
  5. Hamoudi S, Larachi F, Sayari A, J. Catal., 177(2), 247, 1998
  6. Ho SW, Cruz JM, Houalla M, Hercules DM, J. Catal., 135, 173, 1992
  7. Hocevar S, Batista J, Levec J, J. Catal., 184(1), 39, 1999
  8. Hosokawa S, Kanai H, Utani K, Taniguchi YI, Saiti Y, Imamura S, Appl. Catal. B: Environ., 45, 181, 1998
  9. Kim MH, Choo KH, Theor. Appl. Chem. Eng., 9, 1180, 2004
  10. Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 208(2), 381, 2002
  11. Kim JH, Lee HI, Korean J. Chem. Eng., 21(1), 116, 2004
  12. Kim MJ, Nam W, Han GY, Korean J. Chem. Eng., 21(3), 721, 2004
  13. Kim MH, Nam IS, Kim YG, J. Catal., 179(2), 350, 1998
  14. Krishnamoorthy S, Rivas JA, Amiridis MD, J. Catal., 193(2), 264, 2000
  15. Larachi F, Iliuta I, Belkacemi K, Catal. Today, 64(3-4), 309, 2001
  16. Lee G, Rho S, Jahng D, Korean J. Chem. Eng., 21(3), 621, 2004
  17. Pintar A, Catal. Today, 77(4), 451, 2003
  18. Pintar A, Levec J, J. Catal., 135, 345, 1992
  19. Sadana A, Katzer JR, J. Catal., 35, 140, 1974
  20. Sexton BA, Hughes AE, Turney TW, J. Catal., 97, 390, 1986
  21. Sidebottom H, Franklin J, Pure Appl. Chem., 68, 1757, 1996
  22. Silva AMT, Marques RRN, Quinta-Ferreira RM, Appl. Catal. B: Environ., 47(4), 269, 2004
  23. Thormahlen P, Skoglundh M, Fridell E, Andersson B, J. Catal., 188(2), 300, 1999
  24. Venezia AM, Catal. Today, 77(4), 359, 2003
  25. Voss A, Borgmann D, Wedler G, J. Catal., 212(1), 10, 2002
  26. Yankin A, Vikhreva O, Balakirev V, J. Phys. Chem. Solids, 60, 139, 1999
  27. Yao YFY, J. Catal., 33, 108, 1974