Issue
Korean Journal of Chemical Engineering,
Vol.22, No.4, 611-616, 2005
Interaction between Reverse Micelles as a Key Factor Governing Back-Extraction of Proteins and Its Control Systems
The interfacial transport processes of proteins from a reverse micellar phase to an aqueous phase have been investigated focusing on micellar-micellar interaction. The proteins solubilized into reverse micelles were backextracted to the aqueous phase depending on the concentration of reverse micelles in organic phase. This fact seems to suggest the importance of micellar-micellar interactions in back-extraction processes. The interactions induced by various alcohol addition and temperature change could be evaluated easily and quantitatively by the percolation phenomena in reverse micellar systems (RVMS). The interactions were influenced considerably by the presence of small amount of alcohol and temperature in the RVMS. The addition of alcohols promotes the back-extraction of proteins depending on their species and concentrations. In particular, the alcohols that suppress the cluster formation of reverse micelles, remarkably improve the back-extraction processes. With a small amount of alcohol (20mM OctOH), Bovine carbonic anhydrase (CAB) can be back-extracted completely from reverse micelles to aqueous solution at the optimal temperature, in which the so high concentration of salt is not necessary.
[References]
  1. Alexandridis P, Holzwarth JF, Hatton TA, J. Phys. Chem., 99(20), 8222, 1995
  2. Aires-Barros MR, Cabral JMS, Biotechnol. Bioeng., 38, 1302, 1991
  3. Carlson A, Nagarajan R, Biotechnol. Prog., 8, 85, 1992
  4. Cameiro-da-Cunha MG, Cabral JMS, Aires-Barros MR, Bioprocess Eng., 11, 203, 1994
  5. Cassin G, Illy S, Pileni MP, Chem. Phys. Lett., 221, 205, 1994
  6. Dekker K, Riet KV, Bijsterbosch BH, Wolbert RBG, Hilhorst R, Chem. Eng. Sci., 45, 2949, 1990
  7. Dekker M, Riet KV, VanDerPol JJ, Chem. Eng. J., 46, B69, 1991
  8. Hatton TA, Surfactant-Based Separation Processes, Scamehorn, J. F. and Harwell, J. H. ed., p. 55-90, Marcel Dekker, New York, 1989
  9. Holovko M, Badiadi JP, Chem. Phys. Lett., 204, 511, 1993
  10. Hong DP, Kuboi R, Komasawa I, Korean J. Chem. Eng., 14(5), 334, 1997
  11. Hong DP, Kuboi R, Biochem. Eng. J., 4, 23, 1999
  12. Hong DP, Lee SS, Kuboi R, J. Chromatogr. B, 743, 203, 2000
  13. Huruguen JP, Authier M, Greffe JL, Pileni MP, Langmuir, 7, 243, 1991
  14. Jada A, Lang J, Zana R, J. Phys. Chem., 93, 10, 1989
  15. Jada A, Lang J, Zana R, J. Phys. Chem., 94, 387, 1990
  16. Jolles P, Methods Enzymol., 5, 12, 1962
  17. Kuboi R, Hashimoto K, Komasawa I, Kag. Kog. Ronbunshu, 16, 335, 1990
  18. Kuboi R, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 16, 763, 1990
  19. Kuboi R, Mori Y, Komasawa I, Kag. Kog. Ronbunshu, 16, 1060, 1990
  20. Kuboi R, Yano K, Tanaka H, Komasawa I, J. Chem. Eng. Jpn., 26, 286, 1993
  21. Kuboi R, Hong DP, Komasawa I, Shiomori K, Kawano Y, Lee SS, Solvent Extr. Res. Dev. -Jpn., 3, 223, 1996
  22. Lang J, Lalem N, Zana R, J. Phys. Chem., 95, 9533, 1991
  23. Larsson KM, Pileni MP, Eur. Biophys. J., 21, 409, 1993
  24. Leser ME, Luisi PL, Chimia, 44, 270, 1990
  25. Luisi PL, Giomini M, Pileni MP, Robinson BH, Biochim. Biophys. Acta., 947, 209, 1988
  26. Nishiki T, Sato A, Kataoka T, Solv. Ext. in the Process Industries, 2, 840, 1993
  27. Nishiki T, Muto A, Kataoka T, Kag. Kog. Ronbunshu, 21, 916, 1995
  28. Nishiki T, Muto A, Kataoka T, Kato D, The Chem. Eng. J., 59, 297, 1995
  29. Pires MJ, Cabral JMS, Biotechnol. Prog., 9, 647, 1993
  30. Shiomori K, Kawano Y, Kuboi R, Komasawa I, J. Chem. Eng. Jpn., 32(2), 177, 1999
  31. Sun Y, Ichikawa S, Sugiura S, Furusaki S, Biotechnol. Bioeng., 58(1), 58, 1998
  32. Yamada Y, Kuboi R, Komasawa I, Solvent Extr. Res. Dev. -Jpn., 1, 167, 1994