Issue
Korean Journal of Chemical Engineering,
Vol.22, No.4, 599-604, 2005
Cadmium Removal by Juniperus monosperma: the Role of Calcium Oxalate Monohydrate Structure in Bark
This study suggests that calcium oxalate monohydrate over Juniperus monosperma bark is an ion-exchangeable site for cadmium adsorption on the basis of its cadmium adsorption behavior and surface characterization. Cadmium adsorption behavior showed that juniper bark had a higher cadmium adsorption capacity (84.6 μmol Cd g.1 at pH 5) than juniper wood (32.0 μmol Cd g.1 at pH 5), and that the base-treatment improved the cadmium adsorption capacity of only juniper wood. This difference between juniper bark and wood might have originated from different cadmium binding sites. In calcium displacement, the cadmium uptake onto juniper bark was identical to the amount of calcium ions displaced, which indicated that calcium played an important role in cadmium adsorption onto juniper bark. X-ray diffraction (XRD) results gave evidence that only juniper bark contained the structure of calcium oxalate monohydrate. Furthermore, cadmium adsorption decreased the intensity of the characteristic XRD peaks for calcium oxalate monohydrate. In diffuse reflectance infrared Fourier transform (DRIFT) spectra, existence of oxalate on juniper bark was proven again and interpretation on IR band of carbonyl groups matched significantly the cadmium adsorption behavior.
[References]
  1. Brown P, Gill S, Allen SJ, Water Environ. Res., 73, 351, 2001
  2. Chatjigakis AK, Pappas C, Proxenia N, Kalantzi O, Rodis P, Polissiou M, Carbohydr. Polym., 37, 395, 1998
  3. Crist RH, Martin RJ, Crist DR, Environ. Sci. Technol., 33, 2252, 1999
  4. Crist RH, Martin RJ, Joseph C, Environ. Sci. Technol., 30, 2456, 1996
  5. Davis TA, Llannes F, Volesky B, Mucci A, Environ. Sci. Technol., 37, 261, 2003
  6. Davis TA, Volesky B, Mucci A, Water Res., 37, 4311, 2003
  7. Fransioso O, Sanchez-Cortes S, Tugnoli V, Ciavatta C, Gessa C, Appl. Spectrosc., 52, 270, 1998
  8. Ho YS, McKay G, Water Res., 34, 735, 2000
  9. Kontoyannis CG, Bouropoulos NC, Koutsoukos PG, Appl. Spectrosc., 51(8), 1205, 1997
  10. Min SH, Han JS, Shin EW, Park JK, Water Res., 38, 1289, 2004
  11. Nancollas GH, Gardner GL, J. Cryst. Growth, 21, 267, 1974
  12. Ouyang JM, Zhou N, Duan L, Tieke B, Colloids Surf. A: Physicochem. Eng. Asp., 245, 153, 2004
  13. Pappas C, Rodis P, Tarantilis PA, Polissiou M, Appl. Spectrosc., 53, 805, 1999
  14. Petrova EV, Gvozdev NV, Rashkovich LN, J. Opto-electronics and Adv. Mater, 6, 261, 2004
  15. Romero-Gonzalez ME, Williams CJ, Gardiner PHE, Environ. Sci. Technol., 35, 3025, 2001
  16. Shin EW, Han JS, Min SH, Environ. Technol., 25, 185, 2004
  17. Shin EW, Rowell RM, Chemosphere, 60, 1054, 2005
  18. Tiemann KJ, Gardea-Torresdey JL, Gamez G, Dokken K, Sias S, Renner MW, Furenlid LR, Environ. Sci. Technol., 33, 150, 1999
  19. Yang CQ, Xu YF, Wang DJ, Ind. Eng. Chem. Res., 35(11), 4037, 1996
  20. Yu H, Sheikholeslami R, Doherty WOS, Ind. Eng. Chem. Res., 41(14), 3379, 2002
  21. Yun YS, Park D, Park JM, Volesky B, Environ. Sci. Technol., 35, 4353, 2001
  22. Zhang J, Kamdem DP, Holzforschung, 54, 119, 2000