Issue
Korean Journal of Chemical Engineering,
Vol.22, No.4, 541-546, 2005
Raney Ni Catalysts Derived from Different Alloy Precursors Part II. CO and CO2 Methanation Activity
Catalytic activity, in conjunction with reaction mechanism, was studied in the methanation of CO and CO2 on three Raney Ni catalysts derived from different Ni-Al alloys using different leaching conditions. Main products were CH4 and CO2 in CO methanation, and CH4 and CO in CO2 methanation. Any other hydrocarbon products were not observed. Over all catalysts, CO methanation showed lower selectivity to methane and higher activation energy than CO2 methanation. The catalyst derived from alloy having higher Ni content using more severe leaching conditions, namely higher reaction temperature and longer extraction time, showed higher specific activity and higher selectivity to methane both in CO and CO2 methanation. In CO and CO2 methanation on Raney Ni catalyst, catalytic activity was seen to have close relation with the activity to dissociate CO.
[References]
  1. Aksoylu AE, Misirli Z, Onsan ZI, Appl. Catal. A: Gen., 168(2), 385, 1998
  2. Anderson RB, Lee CB, Machiels JC, Can. J. Chem. Eng., 54, 590, 1976
  3. Araki M, Ponec V, J. Catal., 44, 439, 1976
  4. Chang FW, Kuo MS, Tsay MT, Hsieh MC, Appl. Catal. A: Gen., 247(2), 309, 2003
  5. Freel J, Pieters WJM, Anderson RB, J. Catal., 14, 247, 1969
  6. Freel J, Pieters WJM, Anderson RB, J. Catal., 16, 281, 1970
  7. Fujita SI, Takezawa N, Chem. Eng. J., 68(1), 63, 1997
  8. Goodman DW, J. Catal., 216(1-2), 213, 2003
  9. Grenoble DC, Estadt MM, Ollis DF, J. Catal., 67, 90, 1981
  10. Hashimoto K, Habazaki H, Yamasaki M, Meguro S, Sasaki S, Katagiri T, Matsui H, Fujimura T, Izumiya K, Kumagai N, Akiyama E, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 304, 88, 2001
  11. Hu C, Hu H, Li M, Tian A, J. Mol. Struct., 491, 155, 1999
  12. Hwang BB, Yeo YK, Na BK, Korean J. Chem. Eng., 20(4), 631, 2003
  13. Iizuka T, Tanaka Y, Tanabe K, J. Catal., 76, 1, 1982
  14. Kim SB, Kim YK, Lim YS, Kim MS, Hahm HS, Korean J. Chem. Eng., 20(6), 1023, 2003
  15. Lee CB, Anderson RB, Prepr. Can. Symp. Catal., 6, 160, 1979
  16. Lee SW, Nam SS, Kim SB, Lee KW, Choi CS, Korean J. Chem. Eng., 17(2), 174, 2000
  17. Mirodatos C, Preliaud P, Promet H, J. Catal., 107, 275, 1987
  18. Nakabayashi I, Yoshino T, Abe S, Ind. Eng. Chem. Prod. Res. Dev., 22, 578, 1983
  19. Rehmat A, Randhava SS, Ind. Eng. Chem. Prod. Res. Dev., 9, 512, 1970
  20. Sane S, Bonnier JM, Damon JP, Masson J, Appl. Catal., 9, 69, 1984
  21. Savelov AI, Fasman AB, Russ. J. Phys. Chem., 59, 599, 1985
  22. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29, 1065, 2004
  23. Vannice MA, J. Catal., 44, 152, 1976
  24. VanHo S, Harriot P, J. Catal., 64, 272, 1980
  25. Wainwright MS, Anderson RB, J. Catal., 64, 124, 1980
  26. Weatherbee GD, Bartholomew CH, J. Catal., 68, 67, 1981
  27. Weatherbee GD, Bartholomew CH, J. Catal., 77, 460, 1982
  28. Yang CH, Soong Y, Biloen P, "Abundancy and Reactivity of Surface Intermediates in Methanation, Determined with Transient Kinetic Methods", Proceedings 8th International Congress Catalysis, Berlin, Vol. II, 3, 1984
  29. Yesgar PW, Sheintuch M, J. Catal., 127, 576, 1991