Issue
Korean Journal of Chemical Engineering,
Vol.22, No.4, 512-520, 2005
Molecular Dynamics Simulation Study of the Effect of PMMA Tacticity on Free Volume Morphology in Membranes
The effect of the tacticity of poly methyl methacrylate (PMMA) on the morphology of free volume in PMMA membranes was studied by using a molecular dynamics simulation technique. The chain flexibility, chain interaction, end-to-end distance of a chain and the time course of the free volume variation in the various stereo-regular PMMA, were obtained by an MD simulation technique. Simulation results depict that the construction of distinct tacticity has a significant influence on the flexibility of a molecular chain and the morphology of free volume in the syndiotactic (s-) and isotactic (i-) PMMA oligomers. MD calculation of the dynamic microstructure of a PMMA matrix shows that the s-PMMA membrane gives less flexibility in the backbone and a longer end-to-end distance than in the i-PMMA membrane. The less flexibility and longer end-to-end distance in the s-PMMA matrix causes the shapes and sizes of s-PMMA free volume to be longer and larger than those in an i-PMMA membrane. Furthermore, by adopting conformation energy minimization and molecular dynamics simulation techniques, various tacticity models of PMMA were constructed and their effect on the size of accessible free volume and free volume morphology was analyzed. Finally, the adsorbed gas on the surface free volume in s-PMMA was also compared with i-PMMA membrane.
[References]
  1. Allen G, Wright CJ, Higgins JS, Polymer, 15, 319, 1974
  2. Allen MP, Tildesley DJ, Computer Simulation of Liquids, Clarendon Press, Oxford, 126, 1987
  3. Bahar I, Badur B, Doruker P, J. Chem. Phys., 99, 2235, 1993
  4. Bruns W, Bansal R, J. Chem. Phys., 74, 2064, 1981
  5. Bywater S, Toporowski PM, Polymer, 13, 94, 1972
  6. Chang RW, Yethiraj A, J. Chem. Phys., 114(17), 7688, 2001
  7. Consolati G, Genco I, Pegoraro M, Zanderighi L, J. Polym. Sci. B: Polym. Phys., 34(2), 357, 1996
  8. Cuperus FP, Bargeman D, Smolders CA, J. Membr. Sci., 71, 57, 1992
  9. Dongarra J, Meuer H, Simon H, AIChE Symposim Series, 97, 96, 2001
  10. Dybal J, Stokr J, Schneider B, Polymer, 24, 971, 1983
  11. Godman JM, Chemical Applications of Molecular Modelling, Royal Society of Chemistry, 1997
  12. Grohens Y, Brogly M, Labbe C, David MO, Schultz J, Langmuir, 14(11), 2929, 1998
  13. Hofmann D, Heuchel M, Yampolskii Y, Khotimskii V, Shantarovich V, Macromolecules, 35(6), 2129, 2002
  14. Koinuma H, Sato K, Hirai H, Makromol. Chem., 183, 223, 1982
  15. Kuebler SC, Schaefer DJ, Boeffel C, Pawelzik U, Spiess HW, Macromolecules, 30(21), 6597, 1997
  16. Lim SY, Tsotsis TT, Sahimi M, J. Chem. Phys., 119(1), 496, 2003
  17. MacElroy JMD, Korean J. Chem. Eng., 17(2), 129, 2000
  18. Miettonpeuchot M, Condat C, Courtois T, J. Membr. Sci., 133(1), 73, 1997
  19. Min KE, Paul DR, J. Polym. Sci., 26, 1021, 1988
  20. Roe RJ, Computer Simulation of Polymer, Englewood Cliffs, NJ, Prentice-Hall, 220, 1991
  21. Schlick T, Molecular Modeling and Simulation, Springer, New York, 373, 2002
  22. Schroeder JA, Karasz FE, MacKnight WJ, Polymer, 26, 1795, 1985
  23. Soldera A, Grohens Y, Macromolecules, 35(3), 722, 2002
  24. Soldera A, Polymer, 43(15), 4269, 2002
  25. Soldera A, Polym. -Plast. Technol. Eng., 39, 457, 2000
  26. Subramanian V, Asirvatham PS, Balakrishnan R, Ramasami T, Chem. Phys. Lett., 342, 603, 2001
  27. Sun H, Mumby SJ, Maple JR, Hagler AT, J. Am. Chem. Soc., 116, 2987, 1994
  28. Sun H, Macromolecules, 28(3), 701, 1995
  29. Sun H, J. Comput. Chem., 15, 752, 1994
  30. Vacatello M, Flory PJ, Macromolecules, 19, 405, 1986
  31. Verlet L, Phys. Rev., 159, 98, 1967
  32. Vorenkamp EJ, Bosscher F, Challa G, Polymer, 20, 59, 1979