Issue
Korean Journal of Chemical Engineering,
Vol.22, No.3, 358-363, 2005
Electrochemical Degradation of Aqueous Phenols Using Graphite Electrode in a Divided Electrolytic Cell
Untreated industrial effluents invariably contain large amounts of heavy metals and organics. This paper reports the electrochemical oxidation of synthetic water containing 200 ppm of phenol. Studies have been carried out in a compartmentalized cell using platinum (cathode) and graphite (anode). Electrolysis has been done for 40 h at constant applied potential of 5 V in different electrolytes, such as, NaCl (aq), NaOH (aq) and a mixture containing both NaCl (aq) and NaOH (aq) as the anolyte and acid as the catholyte. Phenol concentration decreased from the initial value of 200 to about 10 ppm.; the corresponding COD values, respectively, are ~400 to ~100 ppm. The reaction goes through chloro-compounds as intermediates before being mineralized. The carbon anode seems to be passivated with a thin layer of poly-phenol. A concomitant amount of hydrogen is generated during the electrolytic degradation of phenol.
[References]
  1. Azzam MO, Al-Tarazi M, Tahboub Y, J. Hazard. Mater., 75, 99, 2000
  2. Canizares P, Dominguez JA, Rodrigo MA, Villasenor J, Rodriguez J, Ind. Eng. Chem. Res., 38(10), 3779, 1999
  3. Canizares P, Martinez F, Diaz M, Garcia-Gomez J, Rodrigo MA, J. Electrochem. Soc., 149(8), D118, 2002
  4. Clesceri LS, Greenberg AE, Eaton AD, (Ed.), Standard Methods for the Examination of Water and Waste Water, 20th Edition, Washington, Part 5000, pp. 14-15, 1998
  5. Comninellis C, Pulgarin C, J. Appl. Electrochem., 21, 703, 1991
  6. DuVall SH, McCreery RL, J. Am. Chem. Soc., 122(28), 6759, 2000
  7. DuVall SH, McCreey RL, Anal. Chem., 71, 4594, 1999
  8. Ezerskis Z, Jusys Z, J. Appl. Electrochem., 32(7), 755, 2002
  9. Ezerskis Z, Jusys Z, Pure Appl. Chem., 73, 1929, 2001
  10. Gattrell M, Kirk DW, Can. J. Chem. Eng., 68, 997, 1990
  11. Iniesta J, Gonzalez-Garcia J, Exposito E, Montiel V, Aldaz A, Water Res., 35, 3291, 2001
  12. Juttner K, Galla U, Schmieder H, Electrochim. Acta, 45(15-16), 2575, 2000
  13. Kannan K, Sivadurai SN, JohnBrechmans L, Vijayavalli R, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 30, 2185, 1995
  14. Liu YC, Mccreery RL, J. Am. Chem. Soc., 117(45), 11254, 1995
  15. Peiro AM, Ayllon JA, Peral J, Domenech X, Appl. Catal. B: Environ., 30(3-4), 359, 2001
  16. Pulgarin C, Adler N, Peringer P, Comninellis C, Water Res., 28, 887, 1999
  17. Rajeshwar K, Ibanez JG, Swain GM, J. Appl. Electrochem., 24(11), 1077, 1994
  18. Ribordy P, Pulgarin C, Kiwi J, Peringer P, Water Sci. Technol., 35, 293, 1997
  19. Tahar NB, Savall A, J. Electrochem. Soc., 145(10), 3427, 1998
  20. Torres RA, Peringer W, Pulgarin C, Chemosphere, 50, 97, 2003
  21. Viswanath RP, Int. J. Hydrog. Energy, 29, 1191, 2004
  22. Wang J. Martynez T, Yaniv DR, McCormick LD, J. Electroanal. Chem., 313, 129, 1991
  23. Wu Z, Cong Y, Zhou M, Ye Q, Tan T, Korean J. Chem. Eng., 19(5), 866, 2002
  24. Wu Z, Zhou M, Environ. Sci. Technol., 35, 2698, 2001
  25. Zareie MH, Korbahi BK, Tanyolac A, J. Hazard. Mater., B87, 199, 2001