Issue
Korean Journal of Chemical Engineering,
Vol.22, No.2, 208-213, 2005
Simultaneous Removal of SO2 and NO by Sodium Chlorite Solution in Wetted-Wall Column
The effect of feeding rate of NaClO2 solution, inlet SO2 and NO concentration, [NaClO2]/[SO2+NO] molar ratio ( η), L/G ratio and, solution pH on the simultaneous removal of SOx/NOx has been investigated in a wetted-wall column. Both SOx and NOx removal efficiencies are enhanced with the increasing feeding rate of NaClO2 solution and attain a steady state. NOx removal efficiency increases with increasing SO2 concentration, but SOx removal remains unaffected with increasing NO concentration. In an acidic medium, DeSOx and DeNOx efficiency increased with increasing [NaClO2]/[SO2+NOx] molar ratio and attained a steady state. NOx removal starts only after the complete removal of SOx. The excess of NaClO2 does not enhance NOx removal efficiency. Solution pH does not affect the DeSOx and DeNOx efficiency. The maximum SOx and NOx removal efficiencies achieved at the typical operating conditions of commercialized FGD processes are about 100 and 67%, respectively.
[References]
  1. Adewuyi YG, He XD, Shaw H, Lolertpihop W, Chem. Eng. Commun., 174, 21, 1999
  2. Brogren C, Karlsson HT, Bjerle I, Chem. Eng. Technol., 20(6), 396, 1997
  3. Brogren C, Karlsson HT, Bjerle I, Chem. Eng. Technol., 21(1), 61, 1998
  4. Chien T, Chu H, J. Hazard. Mater., B80, 43, 2000
  5. Chu H, Chien TW, Li SY, The Science of the Total Environment, 275, 127, 2001
  6. Cooper CD, Alley FC, Air Pollution Control: A Design Approach, 2nd Ed., Waveland Press, Inc., Illinois, 454, 1994
  7. de Paiva JL, Kachan GC, Ind. Eng. Chem. Res., 37(2), 609, 1998
  8. Deshwal BR, Jo HD, Lee HK, Can. J. Chem. Eng., 2003
  9. Feng XB, Hall WK, Catal. Lett., 41(1-2), 45, 1996
  10. Harriott P, Smith K, Benson LB, Environ. Prog., 12, 110, 1993
  11. Heck MH, Farrauto RJ, Catalytic Air Pollution Control: Commercial Technology, Van Nostrand Reinhold, New York, 1995
  12. Hsu HW, Lee CJ, Chou KS, Chem. Eng. Commun., 170, 67, 1998
  13. Kieffer RG, Gordon G, Inorg. Chem., 7, 239, 1968
  14. Lancia A, Musmarra D, Pepe F, Ind. Eng. Chem. Res., 36(1), 197, 1997
  15. Littlejohn D, Chang SG, Ind. Eng. Chem. Res., 29, 1420, 1990
  16. Littlejohn D, Wang Y, Chang SG, Environ. Sci. Technol., 27, 2161, 1993
  17. Lyon RK, Environ. Sci. Technol., 21, 231, 1987
  18. Perlmutter H, Ao H, Shaw H, Environ. Sci. Technol., 27, 128, 1993
  19. Sada E, Kumazawa H, Kudo I, Kondo T, Chem. Eng. Sci., 33, 315, 1978
  20. Shen CH, Rochelle GT, Environ. Sci. Technol., 32, 1994, 1998
  21. Shi Y, Wang H, Chang SG, Environ. Prog., 16, 301, 1997
  22. Takeuchi H, Ando M, Kizawa N, Ind. Eng. Chem. Process Des. Dev., 16, 303, 1978
  23. Takeuchi H, Yamanaka Y, Ind. Eng. Chem. Process Des. Dev., 17, 389, 1978
  24. Yang CL, Shaw H, Environ. Prog., 17, 80, 1998
  25. Yang CL, Shaw H, Perlmutter HD, Chem. Eng. Commun., 143, 23, 1996