Issue
Korean Journal of Chemical Engineering,
Vol.21, No.3, 567-574, 2004
A Frequency-Dependent Surfactant Bridge Model for the Electrorheological Behaviors of Surfactant-Activated Suspensions
In surfactant-activated electrorheological (ER) suspensions, the ER response shows linear ER behavior (τ∝Eo2) at small surfactant concentrations and nonlinear ER behavior (τ∝Eon, n<2) at large surfactant concentrations. A surfactant bridge model was proposed to explain the nonlinear ER behavior at large surfactant concentrations with some assumptions. The proposed model successfully predicted the qualitative nonlinear ER behavior of surfactant-activated ER suspensions at large surfactant concentrations. Here, the surfactant bridge model is expanded to predict the electric field frequency dependent ER behavior of surfactant-activated ER suspensions. The developed surfactant bridge model can predict both the linear ER behavior at small surfactant concentrations and the nonlinear ER behavior at large surfactant concentrations. Furthermore, this model can predict two different types of the electric field frequency dependent ER behaviors of surfactant-activated ER suspensions, which depend on the amount of surfactants.
[References]
  1. Block H, Kelly JP, J. Phys. D: Appl. Phys., 21, 1661, 1988
  2. Chin BD, Park OO, Korean J. Chem. Eng., 18(1), 54, 2001
  3. Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 78, 3806, 2001
  4. Deinega YF, Vinogradov GV, Rheol. Acta, 23, 636, 1984
  5. Gast AP, Zukoski CF, Adv. Colloid Interface Sci., 30, 153, 1989
  6. Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961, 1997
  7. Jackson JD, "Electrodynamics," 2nd ed. John Wiley and Sons, Inc., 1975
  8. Jones TB, Kallio GA, J. Electrostatics, 6, 207, 1979
  9. Jordan TC, Shaw MT, IEEE Trans. Elect. Insul., 24, 849, 1989
  10. Kim YD, Klingenberg DJ, J. Colloid Interface Sci., 183(2), 568, 1996
  11. Kim YD, J. Colloid Interface Sci., 236(2), 225, 2001
  12. Kim YD, Park DH, Colloid Polym. Sci., 280, 828, 2002
  13. Kim YD, Park DH, Nam SW, Park TJ, Macromol. Res., 10(4), 215, 2002
  14. Kim YD, Choi GS, Sim SJ, Cho YS, Korean J. Chem. Eng., 16(3), 338, 1999
  15. Kim YD, Song IC, J. Mater. Sci., 37(23), 5051, 2002
  16. Klingenberg DJ, Zukoski CF, Langmuir, 6, 15, 1990
  17. Mason G, Clark WC, Chem. Eng. Sci., 20, 859, 1965
  18. Myers D, "Surfaces, Interfaces, and Colloids: Principles and Applications," VCH Pub. Weinheim, 1991
  19. Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng. Rep., R17, 57, 1996
  20. Petrzhik GG, Chertkova OA, Trapeznikov AA, Dokl. Akad. Nauk SSSR, 253, 173, 1980
  21. Pohl HA, Crane JS, J. Theor. Biol., 37, 1, 1972
  22. Rosen MJ, "Surfactants and Interfacial Phenomena," 2nd ed., Wiley, New York, 1989
  23. Sher LD, Nature, 220, 695, 1968
  24. Shulman ZP, Gorodkin RG, Korobko EV, Gleb VK, J. Non-Newton. Fluid Mech., 8, 29, 1981
  25. Trapeznikov AA, Petrzhik GG, Chertkova OA, Koll. Zhurn., 43, 1134, 1981
  26. Weiss KD, Carlson JD, J. Intell. Sys. Struct., 4, 13, 1993
  27. Winslow WM, J. Appl. Phys., 20, 1137, 1949