Issue
Korean Journal of Chemical Engineering,
Vol.21, No.2, 537-547, 2004
A Comparative Theoretical Study of Au, Ag and Cu Adsorption on TiO2 (110) Rutile Surfaces
The adsorption properties of Au, Ag and Cu on TiO2 (110) rutile surfaces are examined using density functional theory slab calculations within the generalized gradient approximation. We consider five and four different adsorption sites for the metal adsorption on the stoichiometric and reduced surfaces, respectively. The metal-oxide bonding mechanism and the reactivity of metal atoms are also discussed based on the analyses of local density of states and charge density differences. This study predicts that Au atoms prefer to adsorb at the fourfold hollow site over the fivefold-coordinated Ti(5c) and in-plane and bridging O(2c) atoms with the adsorption energy of ? 0.6 eV. At this site, it appears that the covalent and ionic interactions with the Ti(5c) and the O(2c), respectively, contribute synergistically to the Au adsorption. At a neutral F0s center on the reduced surface, Au binds to the surface via a rather strong ionic interaction with surrounding sixfold-coordinated Ti(6c) atoms, and its binding energy is much larger than to the stoichiometric surface. On the other hand, Ag and Cu strongly interact with the surface bridging O(2c) atoms, and the site between two bridging O(2c) atoms is predicted to be energetically the most favorable adsorption site. The adsorption energies of Ag and Cu at the B site are estimated to be ? 1.2 eV and ? 1.8 eV, respectively. Unlike Au, the interaction of Ag and Cu with a vacancy defect is much weaker than with the stoichiometric surface.
[References]
  1. Bates SP, Kresse G, Gillan MJ, Surf. Sci., 385, 386, 1997
  2. Bell AT, Science, 299, 1688, 2003
  3. Bennett RA, Stone P, Price NJ, Bowker M, Phys. Rev. Lett., 82, 3831, 1999
  4. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T, Ilieva L, Iadakiev V, Catal. Today, 75(1-4), 169, 2002
  5. Bogicevic A, Jennison DR, Surf. Sci., 515, L481, 2002
  6. Bredow T, Pacchioni G, Chem. Phys. Lett., 355, 417, 2002
  7. Campbell CT, Parker SC, Starr DE, Science, 298, 811, 2002
  8. Campbell CT, Surf. Sci. Rep., 27, 1, 1997
  9. Ceperley DM, Alder BJ, Phys. Rev. Lett., 45, 566, 1980
  10. Charlton G, Howes P, Nicklin C, Steadman P, Taylor J, Muryn C, Harte S, Mercer J, McGrath R, Norman D, Turner T, Thornton G, Phys. Rev. Lett., 78, 495, 1997
  11. Choudhary TV, Goodman DW, Top. Catal., 21, 1, 2002
  12. Christensen A, Carter EA, J. Chem. Phys., 114(13), 5816, 2001
  13. de Oliveira AL, Wolf A, Schuth F, Catal. Lett., 73(2-4), 157, 2001
  14. Diebold U, Anderson JF, Ng KO, Vanderbilt D, Phys. Rev. Lett., 77, 1322, 1996
  15. Eichler A, Hafner J, Furthmuller J, Kresse G, Surf. Sci., 346, 300, 1996
  16. Ferrari AM, Pacchioni G, J. Phys. Chem., 99(46), 17010, 1995
  17. Giordano L, Pacchioni G, Bredow T, Sanz JF, Surf. Sci., 471, 21, 2001
  18. Guo Q, Cocks I, Williams EM, Phys. Rev. Lett., 77, 3851, 1996
  19. Hammer B, Norskov JK, Surf. Sci., 343, 211, 1995
  20. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Chausen BS, Topsoe H, Science, 295, 2053, 2002
  21. Harrison NM, Wang XG, Muscat J, Scheffler M, Faraday Discussions, 114, 305, 1999
  22. Haruta M, Catal. Today, 36(1), 153, 1997
  23. Hayashi T, Tanaka K, Haruta M, J. Catal., 178(2), 566, 1998
  24. Kolmakov A, Goodman DW, Catal. Lett., 70(3-4), 93, 2000
  25. Kolmakov A, Goodman DW, Surf. Sci., 490, L597, 2001
  26. Kresse G, Hafner J, Phys. Rev., B, Condens. Matter, 47, RC558, 1993
  27. Kresse G, Furthmuller J, Phys. Rev., B, Condens. Matter, 54, 11169, 1996
  28. Kresse G, Hafner J, J. Phys.: Condens Mater., 6, 8245, 1994
  29. Lindan PJD, Harrison NM, Gillan MJ, White JA, Phys. Rev., B, Condens. Matter, 55, 15919, 1997
  30. Lopez N, Norskov JK, Surf. Sci., 515, 175, 2002
  31. Mattsson AE, Jennison DR, Surf. Sci., 520, L611, 2002
  32. Matveev AV, Neyman KM, Yudanov IV, Rosch N, Surf. Sci., 426, 123, 1999
  33. Murray PW, Condon NG, Thornton G, Phys. Rev., B, Condens. Matter, 51, 10989, 1995
  34. Muscat J, Harrison NM, Thorton G, Phys. Rev., B, Condens. Matter, 59, 2320, 1999
  35. Ng KO, Vanderbilt D, Phys. Rev., B, Condens. Matter, 56, 10544, 1997
  36. Onishi H, Iwasawa Y, Surf. Sci., 313, L783, 1994
  37. Pang CL, Haycock SA, Raza H, Murray PW, Thornton G, Gulesren O, James R, Bullett DW, Phys. Rev., B, Condens. Matter, 58, 1586, 1998
  38. Perdew J, Zunger A, Phys. Rev., B, Condens. Matter, 23, 5048, 1981
  39. Perdew J, Chevary J, Vosko S, Jackson K, Pederson M, Singh D, Fiolhais C, Phys. Rev., B, Condens. Matter, 46, 6671, 1992
  40. Reinhardt P, Hess BA, Phys. Rev., B, Condens. Matter, 50, 12015, 1994
  41. Santra AK, Goodman DW, J. Phys.: Condens. Matter, 14, R31, 2002
  42. Schaub R, Wahlstrom E, Ronnau A, Laegsgaard E, Stensgaad I, Besenbacher F, Science, 299, 377, 2003
  43. Siegel DJ, Hector LG, Adams JB, Phys. Rev., B, Condens. Matter, 65, 85415, 2002
  44. Thien-Nga L, Paxon AT, Phys. Rev., B, Condens. Matter, 58, 13233, 1998
  45. Valden M, Lai X, Goodman DW, Science, 281(5383), 1647, 1998
  46. Vanderbilt D, Phys. Rev., B, Condens. Matter, 41, 7892, 1990
  47. Verdozzi C, Jennison DR, Schultz PA, Sears MP, Phys. Rev. Lett., 82, 799, 1999
  48. Vijay A, Mills G, Metiu H, J. Chem. Phys., 118(14), 6536, 2003
  49. Vinet P, Ferrante J, Smith JR, Hose JH, J. Phys.: Condens. Matter, 19, L467, 1986
  50. Wahlstrom E, Lopez N, Schaub R, Thostrup P, Ronnau A, Africh C, Laegsgaard E, Norskov JK, Besenbacher F, Phys. Rev. Lett., 90, 26101, 2003
  51. Wang Y, Hwang GS, Surf. Sci., 542, 72, 2003
  52. Yang Z, Wu R, Goodman DW, Phys. Rev., B, Condens. Matter, 61, 14066, 2000
  53. Zhou J, Kang YC, Chen DA, Surf. Sci., 537, L429, 2003
  54. Zhukovskii YF, Kotomin EA, Jacobs PWM, Stoneham AM, Phys. Rev. Lett., 84, 1256, 2000
  55. Surf. Sci., 343, 211, 1995