Issue
Korean Journal of Chemical Engineering,
Vol.21, No.2, 436-441, 2004
A Physiological Study on Growth and Dibenzothiophene (DBT) Desulfurization Characteristics of Gordonia sp. CYKS1
Physiological characteristics of DBT desulfurization and cell growth of Gordonia sp. CYKS1 were investigated. It exhibited a preference to ethanol in a medium containing two carbon sources, ethanol and one of the carbohydrates used, glucose, sucrose, maltose, and galactose although it consumed both carbon sources simultaneously. Cell growth on ethanol or glucose followed the Monod kinetics. The optimal range of pH for the desulfurization of DBT and the cell growth was 7 to 8. The desulfurization rate decreased about 30% at pH 6, and no significant desulfurization or cell growth was observed at pH 5. As the initial DBT concentration increased up to 1.5 mM, the desulfurization rate also increased while no significant changes in the growth rate were observed. The maximum desulfurization rate was 12.50 μmol L-1 h-1 at an initial DBT concentration of 1.5 mM. Cell growth and desulfurization activity were severely inhibited by the presence of 2-hydroxybiphenyl (2-HBP). When 0.05 mM of 2-HBP was added at the beginning, both of the desulfurization rate and cell growth rate decreased about 20%. It was found that cell growth and desulfurization were completely inhibited in the presence of 2-HBP at 0.15 mM or a higher concentration. The inhibition by 2,2'-dihydroxybiphenyl (DHBP) was less severe than 2-HBP. About 80% of desulfurization activity was retained in the presence of 2,2'-DHBP at 0.4 mM.
[References]
  1. Chang JH, Rhee SK, Chang YK, Chang HN, Biotechnol. Prog., 14(6), 851, 1998
  2. Choi OK, Cho KS, Ryu HW, Chang YK, Biotechnol. Lett., 25(1), 73, 2003
  3. Denis-Larose C, Labbe D, Bergeron H, Jones AM, Greer CW, Al-Hawari J, Grossman MJ, Sankey BM, Lau PCK, Appl. Environ. Microbiol., 63(7), 2915, 1997
  4. Denome SA, Oldfield C, Nash LJ, Young KD, J. Bacteriol., 176, 6707, 1994
  5. Gallado ME, Fernadez A, Lorenzo VD, Garcia JL, Diaz E, J. Bacteriol., 179(22), 7156, 1997
  6. Gallagher JR, Olson ES, Stanley DC, FEMS Microbiol. Lett., 107, 31, 1993
  7. Gray KA, Pogrebinsky OS, Mrachko GT, Xi L, Monticello DJ, Squires CH, Nat. Biotechnol., 14, 1705, 1996
  8. Inoue J, Shaw JP, Rekik K, Harayama S, J. Bacteriol., 177, 1196, 1995
  9. Izumi Y, Ohshiro T, Ogino H, Hine Y, Shimao M, Appl. Environ. Microbiol., 60, 223, 1994
  10. Kayser KJ, Bielaga-Jones BA, Jackowski K, Odusan O, Kilbane JJ, J. Gen. Microbiol., 139, 3123, 1993
  11. Konishi J, Ishii Y, Onaka T, Okumura K, Suzuki M, Appl. Environ. Microbiol., 63, 3164, 1997
  12. Kropp KG, Andersson JT, Fedorak PM, Appl. Environ. Microbiol., 63(8), 3032, 1997
  13. Lee MK, Senius HD, Grossman MJ, Appl. Environ. Microbiol., 61(2), 4362, 1995
  14. Li MZ, Squires CH, Monticello DJ, Chids JD, J. Bacteriol., 178(22), 6409, 1996
  15. Nekodzuka S, Nakajimakambe T, Nomura N, Lu J, Nakahara T, Biocata. Biotrans., 15, 17, 1997
  16. Ohshiro T, Hine Y, Izumi Y, FEMS Microbiol. Lett., 118, 341, 1994
  17. Ohshiro T, Kobayashi Y, Hine Y, Izumi Y, Biosce. Biotech. Biochem., 59, 1349, 1995
  18. Ohshiro T, Suzuki K, Izumi Y, J. Ferment. Bioeng., 83(3), 233, 1997
  19. Ohshiro T, Suzuki K, Izumi Y, J. Ferment. Bioeng., 81(2), 121, 1996
  20. Omori T, Monna L, Saiki Y, Kodama T, Appl. Environ. Microbiol., 58, 911, 1992
  21. Pavel H, Forsman M, Shinger V, J. Bacteriol., 176, 7550, 1994
  22. Piddington CS, Kovacevich BR, Rambosek T, Appl. Environ. Microbiol., 61, 468, 1995
  23. Rhee SK, Chang JH, Chang YK, Chang HN, Appl. Environ. Microbiol., 64, 2327, 1998
  24. Setti L, Lanzarini G, Pifferi PG, "Immobilized Cells for Applications in Non-conventional Systems. Progress in Biotechnology 11 Immobilized Cells: Basics and Applications," R.H. Wijffels (ed.), Elsevier Science B.V., 777, 1996
  25. Setti L, Lanzarini G, Pifferi PG, Process Biochem., 30(8), 721, 1995
  26. Wang P, Krawiec S, Appl. Environ. Microbiol., 62, 1670, 1996