Issue
Korean Journal of Chemical Engineering,
Vol.21, No.1, 286-291, 2004
Thermodynamic Analysis of Liquid Source Chemical Vapor Deposition Process for the Preparation of a Ba-Sr-Ti Oxide Film
The equilibrium concentrations of the chemical species in a Ba-Sr-Ti-C-H-O system, corresponding to a liquid source chemical vapor deposition (LSCVD) process used in the preparation of barium strontium titanium oxide (BST) films, were determined by thermodynamic calculations. Ba(dipivaloylmethanato)2, Sr(dipivaloylmethanato)2, and Ti(tetra-isopropoxide) were assumed as the metal sources, and tetrahydrofuran (THF) and O2 as the solvent and oxidant, respectively. An increase in the amounts of THF, a major source of graphite production, significantly increases the equilibrium concentrations of metal oxides and carbonates in the system. On the other hand, an increase in the O2 content decreases the graphite content and increases the amount of carbonates. Based on these results, the conditions for an LSCVD process that produces minimum amounts of carbon impurities in a BST film were identified as a function of the process temperature and the O2/THF ratio. The results of the equilibrium calculations are in reasonable agreement with experimental data, which indicates that the results can be used as a basis for identifying LSCVD conditions needed to prepare BST films with defined compositions.
[References]
  1. Adachi H, Mitsuyu T, Yamazaki O, Wasa K, J. Appl. Phys., 60, 736, 1986
  2. Barin I, "Thermochemical Data of Pure Substances," VCH, New York, 1989
  3. Besmann TM, SOLGASMIX-PV for PC, A Computer Program to Calculate Equilibrium Relationships in Complex Chemical Systems, Oak Ridge National Laboratory Report No. ORNL/TM-5775, Union Carbide Corp., Oak Ridge, TN, 1977
  4. Chandler CK, Roger C, Hmpden-Smith MJ, Chem. Rev., 93, 1205, 1993
  5. Chase MW, "JANAF Thermochemical Tables," American Chemical Society, New York, 1982
  6. Eriksson G, Acta Chem. Scand., 25, 2651, 1971
  7. Fuchs D, Schneider CW, Schneider R, Rietschel H, J. Appl. Phys., 85, 7362, 1999
  8. Han JH, Ryu HK, Chung CH, Yu BG, Moon SH, J. Electrochem. Soc., 142(11), 3980, 1995
  9. Hioki T, Akiyama M, Ueda T, Onozuka Y, Suzuki K, Jpn. J. Appl. Phys., 38, 5375, 1999
  10. Horikawa T, IEICE TRANS. ELECTRON. E81-C, 497, 1998
  11. Joo JH, Park JB, Kim Y, Lee KS, Roh JS, Kim JJ, Jpn. J. Appl. Phys., 38(2B), 195, 1999
  12. Kang C, Hwang C, Cuo H, Lee B, Park S, Kim J, Horn H, Lee S, Kon Y, Lee M, Jpn. J. Appl. Phys., 35, 4890, 1996
  13. Kawahara T, Yamamuka M, Makita T, Naka J, Yuuki A, Mikami N, Ono K, Jpn. J. Appl. Phys., 33, 5129, 1994
  14. Kawahara T, Yamamuka M, Makita T, Tsutahara K, Yuuki A, Ono K, Matsui Y, Jpn. J. Appl. Phys., 33, 5897, 1994
  15. Kawahara T, Yamamuka M, Yuuki A, Ono K, Jpn. J. Appl. Phys., 34, 5077, 1995
  16. Kawahara T, Yamamuka M, Makita T, Naka S, Yuuki A, Mikami N, Ono K, Jpn. J. Appl. Phys., 35, 4880, 1996
  17. Kawahara T, Matuno S, Yamamuka M, Tarutani M, Sato T, Horikawa T, Uchikawa F, Ono K, Jpn. J. Appl. Phys., 38, 2205, 1999
  18. Kawano H, Morii K, Nakayama Y, J. Appl. Phys., 73, 5141, 1993
  19. Kim BR, Ansari SG, Kim YS, Kim GS, Hwang SC, Lee HG, Shin HS, Korean J. Chem. Eng., 20(4), 772, 2003
  20. Kim YS, Park HH, Kim YS, Shin HS, Korean J. Chem. Eng., 17(4), 473, 2000
  21. Li X, Liu J, Zeng Y, Liang J, Appl. Phys. Lett., 63, 2345, 1993
  22. Miyasaka Y, "High Dielectric Constant (Ba, Sr) TiO3 Thin Films for ULSI DRAM Application," 1995 Int. Conference on Solid State Devices and Materials, Osaka, 506, 1995
  23. Samara GA, J. Appl. Phys., 54, 2538, 1998
  24. Stull DR, Prophet H, "JANAF Thermochemical Tables," Dow Chemical Company, Thermal Research Laboratory, Washington, D.C., 1978
  25. Yamamuka M, Kawahara T, Yuuki A, Ono K, Jpn. J. Appl. Phys., 35, 2530, 1996