Issue
Korean Journal of Chemical Engineering,
Vol.21, No.1, 221-229, 2004
Effects of Charge Density on Water Splitting at Cation-Exchange Membrane Surface in the Over-Limiting Current Region
To determine the correlation between surface properties and concentration polarization (CP) behaviors, cation exchange membranes with varying fixed charge densities were prepared and characterized by using several electrochemical analyses such as chronopotentiometry, zeta potential, and current-voltage measurements. Results showed that CP behavior depended mainly on surface charge density. With higher surface charge density, stronger electroconvection was observed, suggesting that an increase in the surface charge density increased the concentration of the counter ions at the membrane surface. As such, the electric field around the membrane surface was strengthened at a current over the limiting current density. Water splitting was also proportional to the surface charge density. This result was consistent with the classical electric field-enhanced water splitting theory, indicating that water splitting increased due to increases in the electric field and prepolarization of water molecules at the membrane-solution interface of the cation-exchange membrane.
[References]
  1. Choi JH, Moon SH, J. Membr. Sci., 191(1-2), 225, 2001
  2. Choi JH, Lee HJ, Moon SH, J. Colloid Interface Sci., 238(1), 188, 2001
  3. Choi JH, Kim SH, Moon SH, J. Colloid Interface Sci., 241(1), 120, 2001
  4. Crow DR, "Principles and Applications of Electrochemistry," 4th Ed., Blackie Academic & Professional, London, 1994
  5. Li JL, Wang YZ, Yang CY, Long GD, Shen H, J. Membr. Sci., 147(2), 247, 1998
  6. Jimbo T, Tanioka A, Minoura N, Colloids Surf. A: Physicochem. Eng. Asp., 159, 459, 1999
  7. Kang MS, Choi YJ, Choi IJ, Yoon TH, Moon SH, J. Membr. Sci., 216(1-2), 39, 2003
  8. Kang MS, Choi YJ, Moon SH, J. Membr. Sci., 207(2), 157, 2002
  9. Kang MS, Tanioka A, Moon SH, Korean J. Chem. Eng., 19(1), 99, 2002
  10. Kemperman AJB, "Handbook on Bipolar Membrane Technology," Twente University Press, Enschede, 2000
  11. Kim YH, Moon SH, J. Chem. Technol. Biotechnol., 176, 1, 2001
  12. Krol JJ, Wessling M, Strathmann H, J. Membr. Sci., 162(1-2), 155, 1999
  13. Lee HJ, Park JS, Moon SH, Korean J. Chem. Eng., 19(5), 880, 2002
  14. Mecham J, Shobha HK, Wang F, Harrison W, McGrath JE, Polym. Prepr., 41(2), 1388, 2000
  15. Melnik L, Vysotskaja O, Kornilovich B, Desalination, 124(1-3), 125, 1999
  16. Minagawa M, Tanioka A, Ramirez P, Mafe S, J. Colloid Interface Sci., 188(1), 176, 1997
  17. Montiel V, Garcia-Garcia V, Gonzalez-Garcia J, Carmona F, Aldaz A, J. Membr. Sci., 140(2), 243, 1998
  18. Onsager L, J. Chem. Phys., 2, 599, 1934
  19. Paleologou M, Wong PY, Thompson R, Berry RM, J. Pulp Paper Sci., 22(1), J1, 1996
  20. Patel RD, Lang KC, Ind. Eng. Chem. Fundam., 16(3), 340, 1977
  21. Ramirez P, Rapp HJ, Reichle S, Strathmann H, Mafe S, J. Appl. Phys., 72(1), 259, 1992
  22. Rubinstein I, Maletzki F, J. Chem. Soc.-Faraday Trans., 87(13), 2079, 1991
  23. Rubinstein I, Phys. Fluids, 3, 2301, 1991
  24. Rubinstein I, Staude E, Kedem O, Desalination, 69, 101, 1988
  25. Rubinstein I, Zaltzman B, Kedem O, J. Membr. Sci., 125(1), 17, 1997
  26. Sato K, Sakairi T, Yonemoto T, Tadaki T, J. Membr. Sci., 100(3), 209, 1995
  27. Shaposhnik VA, Kesore K, J. Membr. Sci., 136(1-2), 35, 1997
  28. Shi S, Chen PQ, Desalination, 46, 191, 1983
  29. Shim Y, Lee HJ, Lee S, Moon SH, Cho J, Environ. Sci. Technol., 36, 3864, 2002
  30. Simons R, Electrochim. Acta, 29, 151, 1984
  31. Simons R, Nature, 280, 824, 1979
  32. Strathmann H, Krol JJ, Rapp HJ, Eigenberger G, J. Membr. Sci., 125(1), 123, 1997
  33. Wang F, Hickner M, Kim YS, Zawodzinski TA, McGrath JE, J. Membr. Sci., 197(1-2), 231, 2002