Issue
Korean Journal of Chemical Engineering,
Vol.20, No.5, 812-818, 2003
Optical Properties of Pt-TiO2 Catalyst and Photocatalytic Activities for Benzene Decomposition
In order to improve the photocatalytic decomposition activity of benzene, which has been regarded as a typical volatile organic compound in air, TiO2 catalysts modified with metals (Pt, Cu, and Fe) were prepared and tested. Certain correlations between the photocatalytic activities and the optical properties of those catalysts were also found and discussed by using UV-visible spectroscopy and a photoluminescence spectroscopy. Among the metal impregnated TiO2, the Pt impregnated TiO2 showed the best activity and it was even better than that of P-25 which is widely used in commercial applications. For the various metal impregnated TiO2 samples, certain proportional relationships were found between the observed photoluminescence values and photocatalytic activities. On the other hand, in UVvisible spectra for metal impregnated TiO2 samples, the transmittance value was reduced depending upon the loading of metals. It was thought that photocatalytic activity increases from initial reaction state because the number of photoexcited electrons, which exist at Pt surface augment due to the band gap energy change of Pt and TiO2 by sintering and light energy-absorbed electrons excited easily to conduction. In conclusion, it was confirmed that the enhanced photocatalytic activity for high metal loading on TiO2 is related with the high concentration of excited electrons, which could be monitored through UV-visible spectra.