Issue
Korean Journal of Chemical Engineering,
Vol.20, No.2, 375-386, 2003
Molecular Thermodynamics Approach on Phase Equilibria of Dendritic Polymer Systems
We suggest a molecular thermodynamic framework to describe the phase behavior of dendritic polymer systems. The proposed model, which is based on the lattice cluster theory, contains correlations of molecular structure and specific interactions such as hydrogen bonding to the phase equilibria of branch-structured polymer systems. We examine liquid-liquid equilibria (LLE) of hyperbranched polymer solutions and vapor-liquid equilibria (VLE) of dendrimer solutions in the viewpoints of effects of a branched structure and specific interaction formations among endgroups of dendritic polymer and solvent molecules. We investigate VLE of dendrimer/solvent (Benzyl Ether Dendrimer/Toluene) systems by the combination of a new lattice-based model and atomistic simulation technique. The interaction energy parameters are obtained by the pairs method [Baschnagel et al., 1991] including Monte Carlo simulation with excluded volume constraint. In the pairs method [Baschnagel et al., 1991], we do not simulate the whole molecule as in molecular dynamics or molecular mechanics, but only monomer segments interacting with solvent molecules. The proposed model shows improvements in prediction for both phase equilibria (VLE and LLE) due to the branched structure and specific interaction due to endgroups at periphery of dendritic polymer molecule. Atomic simulation technique gives good result in prediction without fitting variables. Our results show that the specific interactions between the endgroup and the solvent molecule play an important role in phase behavior of the given systems.
[References]
  1. Allen MP, Tildesley DJ, "Computer Simulation of Liquids," Clarendon Press, Oxford, England, 1987
  2. Aranovich GL, Donohue MD, J. Chem. Phys., 105(16), 7059, 1996
  3. Backer JA, Fock W, Discuss. Faraday Soc., 15, 188, 1953
  4. Baschnagel J, Binder K, Paul W, Laso M, Suter UW, Batoulis I, Jilge W, Burger T, J. Chem. Phys., 95, 601, 1991
  5. Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 87, 5534, 1988
  6. Bawendi MG, Freed KF, Mohanthy U, J. Chem. Phys., 88, 2741, 1988
  7. Binder K, Heermann DW, "Monte Carlo Simulation in Statistical Physics," Springer-Verlag, Berlin, 1988
  8. Blanco M, J. Comput. Chem., 12, 237, 1991
  9. Burtkert U, Allinger NL, "Molecular Mechanics," American Chemical Society, Washington, D.C., 1982
  10. Chang J, Kim H, Korean J. Chem. Eng., 15(5), 544, 1998
  11. Dagani R, Chem. Eng. News, 74(23), 30, 1996
  12. Dudowicz J, Freed KF, Macromolecules, 24, 5076, 1991
  13. Dudowicz J, Freed MS, Freed KF, Macromolecules, 24, 5096, 1991
  14. Fan CF, Olafson BD, Blanco M, Hsu SL, Macromolecules, 25, 3667, 1992
  15. Flory PJ, "Principles of Polymer Chemistry," Cornell University, Ithaca, 1953
  16. Freed KF, Bawendi MG, J. Phys. Chem., 93, 2194, 1989
  17. Freed KF, Dudowicz J, J. Theor. Chim. Acta, 82, 357, 1992
  18. Freed KF, J. Phys. A: Math. Gen., 18, 871, 1985
  19. Frechet JM, Science, 263(5154), 1710, 1994
  20. Guggenheim EA, "Mixtures," Charendon Press, Oxford, 1952
  21. Hawker CJ, Farrington PJ, Mackay ME, Wooley KL, Frechet JM, J. Am. Chem. Soc., 117(15), 4409, 1995
  22. Huggins ML, J. Chem. Phys., 9, 440, 1941
  23. Jang JG, Bae YC, J. Chem. Phys., 114(11), 5034, 2001
  24. Jang JG, Bae YC, J. Chem. Phys., 116(8), 3484, 2002
  25. Jang JG, Bae YC, Polymer, 40(24), 6761, 1999
  26. Jo WH, Choi K, Macromolecules, 30(6), 1800, 1997
  27. Johansson M, Malmstrom E, Hult A, Tends. Polym. Sci., 4, 398, 1996
  28. Jung JK, Joung SN, Shin HY, Kim SY, Yoo KP, Huh W, Lee CS, Korean J. Chem. Eng., 19(2), 296, 2002
  29. Kim S, Song J, Chang J, Kim H, Korean J. Chem. Eng., 18(2), 159, 2001
  30. Kim YH, Nelso JT, Glynn AB, Cereal Foods World, 39, 8, 1994
  31. Mio C, Kiritsov S, Thio Y, Brafman R, Prausnitz J, Hawker C, Malmstrom EE, J. Chem. Eng. Data, 43(4), 541, 1998
  32. Monnerie L, Suter UW, "Advances in Polymer Science," Springer-Verlag, Berlin, 116, 1994
  33. Nemorivsky AM, Bawendi MG, Freed KF, J. Chem. Phys., 87, 7272, 1987
  34. Nemirovsky AM, Dudowicz J, Freed KF, Phys. Rev., A, 45, 7111, 1992
  35. Panayiotou CG, Sanchez IC, J. Phys. Chem., 95, 10090, 1991
  36. Panayiotou CG, Vera JH, Fluid Phase Equilib., 5, 55, 1980
  37. Panayiotou CG, Macromolecules, 20, 861, 1987
  38. Renuncio JAR, Prausnitz JM, Macromolecules, 9, 898, 1976
  39. Roe RJ, "Computer Simulation of Polymers," Prentice Hall, Englewood Cliffs, NJ, 1991
  40. Sanchez IC, Balazs AC, Macromolecules, 22, 2325, 1989
  41. Schweizer KS, Curro JG, J. Chem. Phys., 91, 5059, 1989
  42. tenBrinke G, Karasz FE, Macromolecules, 17, 815, 1984
  43. Veystman BA, J. Phys. Chem., 94, 8499, 1990