Issue
Korean Journal of Chemical Engineering,
Vol.20, No.2, 247-255, 2003
Oxidation and Reduction of the Metal Surface in Supported Pt Using Dissociative N2O Adsorption Coupled with H2 and CO Titration
Not only was the surface site density in a 0.78% Pt/SiO2 catalyst determined by using selective chemisorption techniques, but the surface chemistry related to decompositive N2O adsorption on the Pt surface was also described by in situ DRIFTS techniques. The “O” coverage established by N2O decomposition at 363 K on a clean Pt surface was equal to that via hydrogen adsorption at 300 K; however, both the coverage of chemisorbed oxygen via O2 chemisorption at 300 K and the COirr coverage were somewhat lower than the “O” monolayer coverage. Surface titration of the “O”-covered Pt crystallites after N2O decomposition at 363 K gave a consistent Pts density with the hydrogen chemisorption. In situ DRIFTS spectra of CO adsorbed at 300 K on both clean and H-covered Pt surfaces exhibited a strong peak at 2,076 cm(-1) for linearly adsorbed CO with a small extent of multi-coordinated CO near 1,803 cm(-1). The adsorption of CO at 300 K on an “O”-covered Pt surface via dissociative N2O adsorption at 363 K appeared subsequently a band at 2,186 cm(-1) due to a tiny amount of PtsO crystallites, which could be completely reduced to H-covered ones, when titrated with H2 at 300 K. The adequate description for these CO adsorption behaviors on different surfaces is PtsO+2CO(g)→PtsCO+CO2(g), although to very small extent, the addition onto PtsO occurs. Spectra of CO adsorbed on the oxidized Pts via N2O decomposition gave consistent surface chemistry with in situ gravimetric measurements. The surface reactions acquired by DRIFTS spectra potentially offer an approach to remove N2O from emission sources by combining its catalytic dissociation with titration of the chemisorbed “O” atoms using either H2 or CO, particularly H2 because of complete recovery to a clean Pts.
[References]
  1. Avery NR, Surf. Sci., 131, 501, 1983
  2. Balakrishnan K, Sachdev A, Schwank J, J. Catal., 121, 441, 1990
  3. Bare SR, Hofman P, King DA, Surf. Sci., 144, 347, 1984
  4. Barker FG, Gasser RPH, Surf. Coat. Technol., 39, 136, 1973
  5. Barshad Y, Zhou X, Gulari E, J. Catal., 94, 128, 1985
  6. Barteau MA, Ko EI, Madix RJ, Surf. Sci., 102, 99, 1981
  7. Behm RJ, Thiel PA, Norton PR, Ertl G, J. Chem. Phys., 78, 7437, 1983
  8. Benesi HA, Curtis RM, Studer HP, J. Catal., 10, 328, 1968
  9. Benson JE, Boudart M, J. Catal., 4, 704, 1965
  10. Berndt H, Muller U, Appl. Catal. A: Gen., 180(1-2), 63, 1999
  11. Candy JP, Fouilloux P, J. Chem. Soc.-Faraday Trans., 76, 616, 1980
  12. Dandekar A, Vannice MA, J. Catal., 178(2), 621, 1998
  13. Daniel WM, Kim Y, Peebles HC, White JM, Surf. Sci., 111, 189, 1981
  14. Dell RM, Stone FS, Tiley PF, Trans. Faraday Soc., 49, 195, 1953
  15. Eischens RP, Pliskin WA, Adv. Catal., 10, 1, 1958
  16. Eischens RP, Pliskin WA, Francis SA, J. Chem. Phys., 22, 1786, 1954
  17. Freel J, J. Catal., 25, 149, 1972
  18. Frennet A, Wells PB, Appl. Catal., 18, 243, 1985
  19. Froitzheim H, Hopster H, Ibach H, Lehwald S, Appl. Phys., 13, 147, 1977
  20. Fuggle JC, Menzel D, Surf. Sci., 79, 1, 1979
  21. Gardner P, Martin R, Tushaus M, Bradshaw AM, J. Electron. Spectrosc. Rel. Phen., 54-55, 619, 1990
  22. Gasser RPH, Marsay CJ, Surf. Sci., 20, 116, 1970
  23. Greenler RG, Burch KD, Kretschmar K, Klauser R, Bradshaw AM, Hayden BE, Surf. Sci., 152-153, 338, 1985
  24. Haaland DM, Surf. Sci., 185, 1, 1987
  25. Hadjiivanov K, J. Chem. Soc.-Faraday Trans., 94, 1901, 1998
  26. Hayden BE, Kretschmar K, Bradshaw AM, Greenler RG, Surf. Sci., 149, 394, 1985
  27. Hoffman DA, Hudson JB, Surf. Sci., 180, 77, 1987
  28. Huang SJ, Walters AB, Vannice MA, J. Catal., 192(1), 29, 2000
  29. Humblot F, Didillon D, Lepeltier F, Candy JP, Corker J, Clause O, Bayard F, Basset JM, J. Am. Chem. Soc., 120(1), 137, 1998
  30. Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 208(2), 381, 2002
  31. Kim MH, Ebner JR, Friedman RM, Vannice MA, J. Catal., 204(2), 348, 2001
  32. Kim MH, Vannice MA, "Reaction of Chemisorbed Oxygen via N2O Decomposition on Supported Pt Catalyst with CO," to be submitted for publication
  33. Kim Y, Schriefels JA, White JM, Surf. Sci., 114, 349, 1982
  34. Klingenberg B, Vannice MA, Appl. Catal. B: Environ., 21(1), 19, 1999
  35. Liotta LF, Martin GA, Deganello G, J. Catal., 164(2), 322, 1996
  36. Mears DE, Hansford RC, J. Catal., 9, 125, 1967
  37. Na BK, Walters AB, Vannice MA, J. Catal., 140, 585, 1993
  38. Narita K, Takezawa N, Kobayashi H, Toyoshima I, React. Kinet. Catal. Lett., 19, 91, 1982
  39. Palmer MB, Vannice MA, J. Chem. Technol. Biotechnol., 30, 205, 1980
  40. Scholten JJF, Konvalinka JA, Trans. Faraday Soc., 65, 2465, 1969
  41. Sen B, Vannice MA, J. Catal., 130, 9, 1991
  42. Seyedmonir SR, Strohmayer DE, Geoffroy GL, Vannice MA, Young HW, Linowski JW, J. Catal., 87, 424, 1984
  43. Shigeishi RA, King DA, Surf. Sci., 58, 379, 1976
  44. Shin EW, Cho SI, Kang JH, Kim WJ, Park JD, Moon SH, Korean J. Chem. Eng., 17(4), 468, 2000
  45. Shun D, Chang HS, Park YS, Bae DH, Jin GT, Korean J. Chem. Eng., 18(5), 630, 2001
  46. Sinfelt JH, Prog. Solid State Chem., 10, 55, 1975
  47. Solymosi F, Knozinger H, J. Catal., 122, 166, 1990
  48. Song JH, Seo KW, Mok YI, Park KY, Ahn BS, Korean J. Chem. Eng., 19(2), 246, 2002
  49. Umbach E, Menzel D, Chem. Phys. Lett., 84, 491, 1981
  50. Vannice MA, Benson JE, Boudart M, J. Catal., 16, 348, 1970
  51. Vannice MA, Twu CC, J. Catal., 82, 213, 1983
  52. Venus D, Hensley DA, Kesmodel LL, Surf. Sci., 199, 391, 1988
  53. Weinberg WH, J. Catal., 28, 459, 1973
  54. Wells PB, Appl. Catal., 18, 259, 1985
  55. Wilson GR, Hall WK, J. Catal., 17, 190, 1970
  56. Yates DJC, Sinfelt JH, J. Catal., 8, 348, 1967