Issue
Korean Journal of Chemical Engineering,
Vol.20, No.2, 207-216, 2003
Nickel Impregnated Pt/H-β and Pt/H-Mordenite Catalysts for Hydroisomerization of n-Hexane
Nickel impregnated Pt/H-β and Pt/H-MOR catalysts with different Ni content were prepared and subjected to hydroisomerization of n-hexane in the presence of flowing H2 gas. The states of Pt and Ni were identified by ESCA. The particle size measured by TEM shows that average particle size increases with increasing Ni loading. The acidity of the catalysts was measured by TPD of ammonia. The catalytic activity of Ni containing and Ni free Pt/H-β and Pt/H-MOR catalysts was compared and found that addition of Ni up to a threshold value (0.3 wt% for β and 0.1 wt% for MOR) increases the n-hexane conversion and dimethyl butanes selectivity due to better metal-acid synergism and decreases the amount of cracked products. When the Ni amount exceeds the threshold values the conversion decreases and cracked products increase. Further the Ni impregnation of Pt containing acidic supports increases the sustainability of the catalysts and was found to favor the protonated cyclopropane (PCP) intermediate mechanism in n-hexane isomerization. β zeolite was found to be a better potential support than mordenite and the isomerized product mixture shows better octane number.
[References]
  1. Anderson JR, Avery NR, J. Catal., 5, 446, 1966
  2. Arribas MA, Marquez F, Martinez A, J. Catal., 190(2), 309, 2000
  3. Bertolini JC, Tardy B, Abon M, Billy J, Delichere P, Massardier J, Surf. Sci., 135, 117, 1983
  4. Blomsma E, Martens JA, Jacobs PA, J. Catal., 165(2), 241, 1997
  5. Blomsma E, Martens JA, Jacobs PA, J. Catal., 155(1), 141, 1995
  6. Brouwer DM, "Chemistry and Chemical Engineering of Catalytic Processes," Princs, R. Schult, G.C.A., Eds., Sijthof and Noordhoff, Germantown, M.D., 1980
  7. Canizares P, de Lucas A, Dorado F, Duran A, Asencio I, Appl. Catal. A: Gen., 169(1), 137, 1998
  8. Chen JK, Martin AM, Kim YG, John VT, Ind. Eng. Chem. Res., 27, 401, 1988
  9. Chu HY, Rosynek RP, Lunsford JH, J. Catal., 178(1), 352, 1998
  10. Condon FE, Catalysis, 1, 6, 1958
  11. Corolleur C, Corolleur S, Gault FG, J. Catal., 24, 385, 1972
  12. Deannan TF, Kennedy CR, AIChE J., 39(4), 607, 1993
  13. Glannetto GE, Perot GE, Guisnet MR, Ind. Eng. Chem. Prod. Res. Dev., 25, 481, 1986
  14. Higgins JB, Lapierre RB, Schlenker JL, Rohrman AC, Wood JD, Zeolites, 8, 446, 1988
  15. Iglesia E, Soled SL, Kramer GM, J. Catal., 144, 238, 1993
  16. Jao RM, Lin TB, Chang JR, J. Catal., 161(1), 222, 1996
  17. Jordao H, Simoes V, Montes A, Cardoso D, Stud. Surf. Sci. Catal., 130, 2387, 2000
  18. Lee JK, Rhee HK, Catal. Today, 38(2), 235, 1997
  19. Leu LJ, Hov LY, Kang BC, Li C, Wu ST, Wu JC, Appl. Catal., 69, 49, 1991
  20. Lugstein A, Jentys A, Vinek H, Appl. Catal. A: Gen., 152(1), 93, 1997
  21. Malyala RV, Rode CV, Arai M, Hegde SG, Chaudhari RV, Appl. Catal. A: Gen., 193(1-2), 71, 2000
  22. Minchev C, Knazirev V, Kosova L, Pechev V, Grunser W, Schimidt F, Rees LVC, Proc. 5th Int. Conf. Zeolites, Heyden, London, 335, 1980
  23. Narayanan S, Zeolites, 4(3), 231, 1984
  24. Sinha AK, Sivasanker S, Catal. Today, 49(1-3), 293, 1999
  25. Tiong Sie S, Ind. Eng. Chem. Res., 31, 1881, 1992
  26. Weisz PB, Prater CD, Adv. Catal., 6, 413, 1954