Issue
Korean Journal of Chemical Engineering,
Vol.19, No.3, 495-504, 2002
Rapid Growth of Particles by Coagulation Between Particles in Silane Plasma Reactor
The changes of particle size distribution were investigated during the rapid growth of particles in the silane plasma reactor by the discrete-sectional model. The particle size distribution becomes bimodal in the plasma reactor and most of the large sized particles are charged negatively, but some fractions of small sized particles are in a neutral state or even charged positively. As the mass generation rate of monomers increases or as the monomer diameter decreases, the large sized particles grow more quickly and the particle size distribution becomes bimodal earlier. As the mass generation rate of monomers decreases, the electron concentration in the plasmas increases and the fraction of particles charged negatively increases. With the decrease in monomer diameter, the electron concentration decreases in the beginning of plasma discharge but later increases.
[References]
  1. Bouchoule A, Boufendi L, Plasma Sources Sci. Technol., 3, 292, 1994
  2. Boufendi L, Bouchoule A, Plasma Sources Sci. Technol., 3, 262, 1994
  3. Childs MA, Gallagher A, J. Appl. Phys., 87, 1076, 2000
  4. Choi SJ, Kushner MJ, J. Appl. Phys., 74(2), 853, 1993
  5. Friedlander SK, "Smoke, Dust and Haze," Wiley-Interscience, New York, 1977
  6. Graves DB, Daugherty JE, Kilgore MD, Porteous RK, Plasma Sources Sci. Technol., 3, 433, 1994
  7. Gelbard F, Tambour Y, Seinfeld JH, J. Colloid Interface Sci., 76(2), 541, 1980
  8. Gordiets BF, Ferreira CM, J. Appl. Phys., 86(8), 4118, 1999
  9. Goree J, Plasma Sources Sci. Technol., 3, 400, 1994
  10. Horanyi M, Goertz CK, Astrophys. J., 361, 155, 1990
  11. Howling AA, Sansonnens L, Dorier JL, Hollenstein C, J. Phys. D: Appl. Phys., 26, 1003, 1993
  12. Hung FY, Kushner MJ, J. Appl. Phys., 81(9), 5960, 1997
  13. Kim DJ, Kim KS, Jpn. J. Appl. Phys., 36, 4989, 1997
  14. Kim DJ, Kim KS, Aerosol Sci. Technol., 32, 293, 2000
  15. Kim KS, Ikegawa M, Plasma Sources Sci. Technol., 5, 311, 1996
  16. Kim KS, Kim DJ, J. Appl. Phys., 87(6), 2691, 2000
  17. Kortshagen U, Bhandarkar U, Phys. Rev. E, 60(1), 887, 1999
  18. Landgrebe JD, Pratsinis SE, J. Colloid Interface Sci., 139(1), 63, 1990
  19. Lieberman MA, Lichtenberg AJ, "Principles of Plasma Discharges and Materials Processing," Wiley-Interscience, New York, 1994
  20. Matsoukas T, Russell M, Smith M, J. Vac. Sci. Technol. A, 14(2), 624, 1996
  21. Riggs JB, "An Introduction to Numerical Methods for Chemical Engineers," Texas Tech University Press, Texas, 1988
  22. Samsonov D, Goree J, J. Vac. Sci. Technol. A, 17(5), 2835, 1999
  23. Selwyn GS, Semicond. Int., 16, 72, 1993
  24. Selwyn GS, Plasma Sources Sci. Technol., 3, 340, 1994
  25. Shiratani M, Kawasaki H, Fukuzawa T, Tsuruoka H, Yoshioka T, Ueda Y, Singh S, Watanabe Y, J. Appl. Phys., 79(1), 104, 1996
  26. Watanabe Y, Plasma Phys. Control. Fusion, 39, A59, 1997
  27. Wu CY, Biswas P, Aerosol Sci. Technol., 29, 359, 1998
  28. Wu JJ, Flagan RC, J. Colloid Interface Sci., 123(2), 339, 1988