Issue
Korean Journal of Chemical Engineering,
Vol.17, No.6, 684-690, 2000
Hydrodynamic Transition from Fixed to Fully Fluidized Beds for Three-Phase Inverse Fluidization
Hydrodynamic transition experiments, involving both visual observations and pressure measurements, were performed using a 127-mm diameter Plexiglas column for three-phase inverse fluidized beds of 5.8-mm polyethylene spheres. Observations of interest not hitherto reported include: (1) A marked hysteresis effect (even when starting from a loose-packed condition) between inverse fluidization and defluidization which disappears when a wetting agent is added to the downflowing water. (2) An initially abrupt decrease of the minimum fluidization voidage, epsilon (mf), followed by a gradual rise of epsilon (mf) with increasing superficial gas velocity U-g. (3) Lower values of epsilon (mf) for three-phase systems than for the corresponding two-phase (liquid-solid) fluidized beds because local agitation by the gas bubbles causes bed compaction near the minimum liquid fluidization velocity, U-lmf (4) U-lmf vs. U-g curves which, though they always show U-lmf decreasing as U-g increases, sometimes display concave-downward, sometimes concave-upward and sometimes S-shaped behavior.
[References]
  1. Briens CL, Ibrahim YAA, Margaritis A, Bergougnou MA, Chem. Eng. Sci., 54(21), 4975, 1999
  2. Briens CL, University of Western Ontario, Personal Communication, 1997
  3. Briens LA, Briens CL, Margaritis A, Hay J, AIChE J., 43(5), 1180, 1997
  4. Buffiere P, Moletta R, Chem. Eng. Sci., 54(9), 1233, 1999
  5. Chern SH, Fan LS, Muroyama K, AIChE J., 30, 288, 1984
  6. Chern SH, Muroyama K, Fan LS, "Hydrodynamics of Constrained Inverse Fluidezation and Semifluidization in a Gas-Liquid-Solid System," 74(th) AIChE Annual Meeting, New Orleans, LA, 1981
  7. Chern SH, Muroyama K, Fan LS, Chem. Eng. Sci., 38, 1167, 1983
  8. Choi HS, Shin MS, Korean J. Chem. Eng., 16(5), 670, 1999
  9. Comte MP, Bastoul D, Hebrard G, Roustan M, Lazarova V, Chem. Eng. Sci., 52(21-22), 3971, 1997
  10. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  11. Fan LS, "Gas-Liquid-Solid Fluidization Engineering," Butterworth, Stoneham, MA, 1989
  12. Fan LS, Muroyama K, Chern SH, Chem. Eng. J., 24, 143, 1982
  13. Fan LS, Muroyama K, Chern SH, Chem. Eng. Sci., 37, 1570, 1982
  14. Gonzalez G, Ramirez F, Monroy O, Biotechnol. Lett., 14, 149, 1992
  15. Ibrahim YA, Briens CL, Margaritis A, Bergongnou MA, AIChE J., 42(7), 1889, 1996
  16. Ibrahim YAA, University of Western Ontario, Personal Communication, 1997
  17. Karamanev DG, Nikolov LN, AIChE J., 38, 1916, 1992
  18. Karamanev DG, Nikolov LN, AIChE J., 38, 1843, 1992
  19. Karamanev DG, Chavarie C, Samson R, Biotechnol. Bioeng., 57, 471, 1997
  20. Kaul SN, Gadaraki SK, Chem. Eng. World, 15, 25, 1990
  21. Krishnaiah K, Guru S, Sekar V, Chem. Eng. J., 51, 109, 1993
  22. Lee DH, Epstein N, Grace JR, "Models for Minimum Liquid Fluidization Velocity of Gas-Liquid Fluidized beds," Proceedings of 8(th) APCChE Congress, 1699, 1999
  23. Legile P, Menard G, Laurent C, Thomas D, Bernis A, Intern. Chem. Eng., 32, 41, 1988
  24. Nikolov L, Karamanev D, Can. J. Chem. Eng., 65, 214, 1987
  25. Ramsay BA, Wang D, Chavarie C, Rouleau D, Ramsay JA, J. Ferment. Bioeng., 72, 495, 1991
  26. Shiomodiara C, Yushina Y, Kamata H, Komatsu H, Kumira A, Mabu O, Tanak Y, "Process for Biological Treatment of Waste Water in Downflow Operation," U.S. Patent, 4,256,573, 1981
  27. Tarmy BL, Coulaloglou CA, Chem. Eng. Sci., 47, 3231, 1992
  28. Tsuchiya K, Nakanishi O, Chem. Eng. Sci., 47, 3347, 1992
  29. Wright PC, Raper JA, Chem. Eng. Technol., 19(1), 50, 1996
  30. Zhang JP, Epstein N, Grace JR, Zhu J, Trans IChemE, 73(Part A), 347, 1995
  31. Zhang JP, Epstein N, Grace JR, Powder Technol., 100(2), 113, 1998