Issue
Korean Journal of Chemical Engineering,
Vol.17, No.5, 534-540, 2000
Swelling Equilibria of Polymeric Hydrogels Containing Poly(acrylamide-sodiumallylsulfonate-acrylic acid)
The superabsorbent poly(AM-SAS-AA)s were synthesized to improve the water absorption capacities in comparison with the poly(AM-SAS) by an aqueous solution polymerization method from acrylamide (AM), sodium allylsulfonate (SAS), and acrylic acid (AA). The reaction conditions were controlled by varying the AA concentrations and fixing other agent concentrations to obtain the optimal superabsorbent poly(AM-SAS-AA). The poly(AM-SAS-AA) showed maximal absorption capacity at 0.3 mol/L among AA concentrations from 0.053 mol/L to 0.4 mol/L. The water absorption capacities of poly(AM-SAS-AA)s prepared at the optimal reaction condition were measured within the temperature ranges from 298.15 K to 318.15 K. Those experimental dan were used to describe the effect factors on absorption capacities and swelling equilibria data among those data were correlated with the swelling models to estimate the interchange energy parameters. Each swelling models combined with group contribution models (UNIFAC, ASOG) was introduced to calculate the swelling equilibria of water(1)/poly(AM-SAS-AA)(2) systems. The swelling behaviors could be described by the estimated parameters, and the calculated values agreed well with the experimental data.
[References]
  1. Bell CL, Peppas NA, Polym. Eng. Sci., 36(14), 1856, 1996
  2. Brannon-Peppas L, Peppas NA, Chem. Eng. Sci., 46, 715, 1991
  3. Brannon-Peppas L, Peppas NA, Polym. Bull., 20, 285, 1988
  4. Buchholz FL, Peppas NA, ACS Symposium, 206, 1993
  5. Chang SC, Yoo JS, Woo JW, Choi JS, Korean J. Chem. Eng., 16(5), 581, 1999
  6. Choi JS, Tochigi K, Kojima K, Fluid Phase Equilib., 111(1), 143, 1995
  7. Flory PJ, "Principles of Polymer Chemistry," Conell University Press, Ithaca, NY, London, 1953
  8. Flory PJ, Rehner J, J. Chem. Phys., 11, 512, 1943
  9. Flory PJ, Rehner J, J. Chem. Phys., 11, 521, 1943
  10. Fredenslund A, Jones RL, Prausnitz JM, AIChE J., 21(6), 1086, 1975
  11. Gmehling J, Rasmussen P, Fredenslund A, Ind. Eng. Chem. Proc. Des. Dev., 32, 118, 1982
  12. Guggenheim EA, "Mixtures," Clarendon Press, Oxford, 1952
  13. Guggenheim EA, "Statistical Thermodynamics of Mixtures with Nonzero Energies of Mixing," Proc. R. Soc. London, A183, 213, 1944
  14. Gusler GM, Cohen Y, Ind. Eng. Chem. Res., 33(10), 2345, 1994
  15. James HM, Guth E, J. Chem. Phys., 11, 455, 1943
  16. Kim SJ, Yoo JS, Choi JS, HWAHAK KONGHAK, 36(2), 314, 1998
  17. Kojima K, Tochigi K, "Prediction of Vapor-Liquid Equilibria by ASOG Method," Elsevier, Amsterdam, 1979
  18. Liu ZS, Rempel GL, J. Appl. Polym. Sci., 64, 1345, 1996
  19. Oishi T, Prausnitz JM, Ind. Eng. Chem. Proc. Des. Dev., 17, 333, 1978
  20. Panayiotou C, Vera JH, Fluid Phase Equilib., 5, 55, 1980
  21. Parks LR, U.S. Patent, 4,295,987, 1981
  22. Prange MM, Hooper HH, Prausnitz JM, AIChE J., 35, 803, 1989
  23. Stanley FW, U.S. Patent, 4,351,261, 1987
  24. Tochigi K, Tiegs D, Gmehling J, Kojima K, J. Chem. Eng. Jpn., 23, 453, 1990
  25. Wall FT, White RA, Macromolecules, 7, 849, 1974
  26. Yamasaki H, Harada S, U.S. Patent, 4,446,261, 1984
  27. Yao KJ, Zhou WJ, J. Appl. Polym. Sci., 53(11), 1533, 1994
  28. Yoshida T, Iwagami S, Ueshima T, Hosoda Y, U.S. Patent, 4,351,922, 1982
  29. Zhou WJ, Yao KJ, Kurth MJ, J. Appl. Polym. Sci., 62(6), 911, 1996