Issue
Korean Journal of Chemical Engineering,
Vol.40, No.6, 1497-1509, 2023
Zinc oxide-tungsten oxide (ZnO-WO3) composite for solar light-assisted degradation of organic dyes
Photocatalytic degradation of dyes is one of the most effective methods that can be utilized for a pollutionfree environment. For this purpose, Tungsten oxide (WO3), zinc oxide (ZnO) and their composite WO3/ZnO were synthesized using facile route. X-rays diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed their structural, spectral and morphological features, respectively. These techniques confirmed the formation of desired products. The as-prepared samples were utilized as photocatalysts for the evaluation of the photocatalytic removal of methylene blue and rhodamine B under solar light irradiation. The obtained results showed that the synergistic effect of tungsten oxide and zinc oxide is responsible for the increased charge separation and reduction in recombination chances of charge carriers that enhance the remarkable photocatalytic performance. For methylene blue and rhodamine-b, the percentage degradation was 94% and 85.7%, respectively. Different scavenger studies showed that holes are the major active species responsible for the removal of methylene blue. The EIS and Mott-Schottky plots confirmed the p-type and n-type character of WO3 and ZnO, respectively. Briefly, the as-synthesized nanocomposite showed enhanced photocatalytic behavior for the degradation of various dyes as compared to pristine metal oxides.