Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 436-444, 2023
Patterning potential of the terminal system in the Drosophila embryo
Segmentation of the Drosophila embryo is initiated by localized maternal signals. In this context, anteriorly localized Bicoid activates the gap genes in the anterior half of the embryo while posteriorly localized Nanos represses the translation of maternal hunchback mRNA to pattern the posterior half. The non-segmented termini are patterned by the localized activation of mitogen-activated protein kinase. Yet, the spatial extent of the terminal patterning system in regulating gap genes beyond poles remains unknown. We investigated the patterning potential of the terminal system using mutagenized embryos that lack both the anterior and the posterior maternal signaling systems. Using a combination of quantitative imaging and mathematical modeling, we analyzed the spatial patterns of gap genes in the early Drosophila embryo. We found that this mutant embryo develops symmetric cuticle patterns along the anteroposterior axis with two segments on each side. Notably, the terminal system can affect the expression of Krüppel in the torso region. Our mathematical model recapitulates the experimental data and reveals the potential bistability in the terminal patterning system. Collectively, our study suggests that the terminal system can act as a long-range inductive signal and establish multiple gene expression boundaries along the anteroposterior axis of the developing embryo.
[References]
  1. Jaeger J, Manu, Reinitz J, Curr. Opin Genet. Dev., 22, 533, 2012
  2. Wieschaus E, Curr. Top Dev. Biol., 117, 567, 2016
  3. Casanova J, Struhl G, Genes Dev., 3, 2025, 1989
  4. Driever W, Nusslein-Volhard C, Cell, 54, 95, 1988
  5. Jaeger J, Cell Mol. Life Sci., 68, 243, 2011
  6. St Johnston D, Nusslein-Volhard C, Cell, 68, 201, 1992
  7. Akam M, Development, 101, 1, 1987
  8. Ephrussi A, St Johnston D, Cell, 116, 143, 2004
  9. Dubnau J, Struhl G, Nature, 379, 694, 1996
  10. Rivera-Pomar R, Niessing D, Schmidt-Ott U, Gehring WJ, Jackle H, Nature, 379, 746, 1996
  11. De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F, Cell Mol. Life Sci., 75, 1929, 2018
  12. Lehmann R, Nusslein-Volhard C, Development, 112, 679, 1991
  13. Wreden C, Verrotti AC, Schisa JA, Lieberfarb ME, Strickland S, Development, 124, 3015, 1997
  14. Furriols M, Casanova J, Embo J., 22, 1947, 2003
  15. Smits CM, Shvartsman SY, Curr. Top Dev. Biol., 137, 193, 2020
  16. Mineo A, Furriols M, Casanova J, Open Biol, 8, 180180, 2018
  17. Cinnamon E, Helman A, Schyr RBH, Orian A, Jimenez G, Paroush Z, Development, 135, 829, 2008
  18. Jimenez G, Guichet A, Ephrussi A, Casanova J, Genes Dev., 14, 224, 2000
  19. Kim Y, Coppey M, Grossman R, Ajuria L, Jimenez G, Paroush Z, Shvartsman SY, Curr. Biol., 20, 446, 2010
  20. Johnson HE, Goyal Y, Pannucci NL, Schupbach T, Shvartsman SY, Toettcher JE, Dev. Cell, 40, 185, 2017
  21. Coppey M, Boettiger AN, Berezhkovskii AM, Shvartsman SY, Curr. Biol., 18, 915, 2008
  22. Kim Y, Iagovitina A, Ishihara K, Fitzgerald KM, Deplancke B, Papatsenko D, Shvartsman SY, Chaos, 23, 025105, 2013
  23. Ashyraliyev M, Siggens K, Janssens H, Blom J, Akam A, Jaeger J, PLoS Comput. Biol., 5, e1000548, 2009
  24. Perkins TJ, Jaeger J, Reinitz J, Glass L, PLoS Comput. Biol., 2, e51, 2006
  25. Kim Y, Andreu MJ, Lim B, Chung K, Terayama M, Jimenez G, Berg CA, Lu H, Shvartsman SY, Dev. Cell, 20, 880, 2011
  26. Kim Y, Paroush Z, Nairz K, Hafen E, Jimenez G, Shvartsman SY, Mol. Syst. Biol., 7, 467, 2011
  27. Papatsenko D, Levine MS, Proc. Natl. Acad Sci. USA, 105, 2901, 2008