Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 419-428, 2023
Novel silicatein-like protein for biosilica production from Amphimedon queenslandica and its use in osteogenic composite fabrication
Efforts to find sustainable and eco-friendly ways to conduct chemical reactions have led to the mimicking of nature. In this study, a new silica polymerization protein that can produce silica in an environmentally friendly manner was developed using cathepsin L-like protein (AqCtL) from Amphimedon queenslandica with a 61% sequence identity to that of silicatein-alpha, which is a natural biosilicifying enzyme. To stabilize the protein structure, heterologously expressed AqCtL in Escherichia coli was mutated into AqCtLSN by changing the amino acid residues responsible for protease cleavage. The insoluble form of AqCtLSN was reconstituted into a soluble protein through the refolding process, displaying silica-condensing activity from silicic acid. AqCtLSN self-assembled, aggregated, and attached to a support in the PBS buffer without losing silica deposition activity. These properties were applied to fabricate a silica-hybrid material using a gelatin-tyramine-alginate cross-linked hydrogel as a scaffold. FT-IR analysis revealed that a silica hybrid material was produced owing to the in situ silicification by AqCtLSN immobilized on the hydrogel. The surface of biosilica mediated by AqCtLSN demonstrated an increase in cell proliferation, alkaline phosphatase activity, and calcium mineral precipitation in the osteogenesis of MC3T3 E1 cells compared to those without biosilica. In conclusion, AqCtLSN, recombinantly expressed in E. coli, is a novel biosilica-forming protein that can be used to produce composites for biomedical applications, especially bone regeneration.
[References]
  1. Estroff LA, Chem. Rev., 108, 4329, 2008
  2. Shimizu K, Cha J, Stucky GD, Morse DE, Proc. Natl. Acad. Sci. USA, 95, 6234, 1998
  3. Olszta MJ, Odom DJ, Douglas EP, Gower LB, Connect. Tissue Res., 44, 326, 2003
  4. Wiesmann HP, Meyer U, Plate U, Hohling HJ, Int. Rev. Cytol., 242, 121, 2005
  5. Gower LB, Chem. Rev., 108, 4551, 2008
  6. Moura HM, Unterlass MM, Biomimetics, 5, 29, 2020
  7. Nudelman F, Sommerdijk NA, Angew. Chem.-Int. Edit., 51, 6582, 2012
  8. Dickerson MB, Sandhage KH, Naik RR, Chem. Rev., 108, 4935, 2008
  9. Böhm CF, Harris J, Schodder PI, Wolf SE, Materials, 12, 2117, 2019
  10. Kroger N, Deutzmann R, Sumper M, Science, 286, 1129, 1999
  11. Abdelhamid MAA, Pack SP, Acta Biomater., 120, 38, 2021
  12. Bulatovic SM, Handbook of flotation reagents: Chemistry, theory and practice, in Beneficiation of silica sand, Elsevier, Canada (2015).
  13. Jafari S, Derakhshankhah H, Alaei L, Fattahi A, Varnamkhasti BS, Saboury AA, Biomed. Pharmacother., 109, 1100, 2019
  14. Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R, Biosensors, 11, 472, 2021
  15. Kumari S, Min KH, Kanth BK, Jang EK, Pack SP, Biotechnol. Bioprocess Eng., 25, 758, 2020
  16. Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J, Nanoscale, 13, 15998, 2021
  17. Brinker CJ, Scherer GW, Sol-gel science: The physics and chemistry of sol-gel processing, Academic Press, Boston, London (1990).
  18. Dickerson MB, Naik RR, Sarosi PM, Agarwal G, Stone MO, Sandhage KH, J. Nanosci. Nanotechnol., 5, 63, 2005
  19. Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC, Chem. Rev., 118, 11118, 2018
  20. Görlich S, Samuel AJ, Best RJ, Seidel R, Vacelet J, Leonarski FK, Tomizaki T, Rellinghaus B, Pohl D, Zlotnikov I, Proc. Natl. Acad. Sci. USA, 117, 31088, 2020
  21. Schröder HC, Wang X, Manfrin A, Yu SH, Grebenjuk VA, Korzhev M, Wiens M, Schlossmacher U, Müller WEG, J. Biol. Chem., 287, 22196, 2012
  22. Ki MR, Jang EK, Pack SP, Process Biochem., 49, 95, 2014
  23. Krasko A, Lorenz B, Batel R, Schroder HC, Muller IM, Muller WE, Eur. J. Biochem., 267, 4878, 2000
  24. Muller WE, Krasko A, Le Pennec G, Steffen R, Wiens M, Ammar MS, Muller IM, Schroder HC, Prog. Mol. Subcell. Biol., 33, 195, 2003
  25. Pozzolini M, Sturla L, Cerrano C, Bavestrello G, Camardella L, Parodi AM, Raheli F, Benatti U, Muller WE, Giovine M, Mar. Biotechnol., 6, 594, 2004
  26. Wang X, Schröder HC, Müller WEG, Trends Biotechnol., 32, 441, 2014
  27. Dakhili SYT, Caslin SA, Faponle AS, Quayle P, de Visser SP, Wong LS, Proc. Natl. Acad. Sci. USA, 114, E5285, 2017
  28. Ki MR, Yeo KB, Pack SP, Bioprocess. Biosyst. Eng., 36, 643, 2012
  29. Oguri H, Nakashima K, Godigamuwa K, Okamoto J, Takeda Y, Okazaki F, Sakono M, Kawasaki S, J. Biosci. Bioeng., 133, 222, 2022
  30. Fairhead M, Johnson KA, Kowatz T, McMahon SA, Carter LG, Oke M, Liu H, Naismith JH, van der Walle CF, Chem. Commun., 15, 1765, 2008
  31. Kirschke H, Barrett AJ, Rawlings ND, Lysosomal cysteine proteases, 2nd Edn., Oxford University Press, Oxford, New York (1998).
  32. Muller WE, Boreiko A, Wang X, Belikov SI, Wiens M, Grebenjuk VA, Schlossmacher U, Schroder HC, Gene, 395, 62, 2007
  33. Povarova NV, Barinov NA, Baranov MS, Markina NM, Varizhuk AM, Pozmogova GE, Klinov DV, Kozhemyako VB, Lukyanov KA, Sci. Rep., 8, 16759, 2018
  34. Kamenev DG, Shkryl YN, Veremeichik GN, Golotin VA, Naryshkina NN, Timofeeva YO, Kovalchuk SN, Semiletova IV, Bulgakov VP, J. Nanosci. Nanotechnol., 15, 10046, 2015
  35. Fisher CL, Pei GK, Biotechniques, 23, 570, 1997
  36. Elkhooly TA, Müller WEG, Wang X, Tremel W, Isbert S, Wiens M, Bioinspir. Biomim., 9, 044001, 2014
  37. Ki MR, Kim SH, Nguyen TKM, Son RG, Jun SH, Pack SP, ACS Biomater. Sci. Eng., (2022).
  38. Lee DK, Ki MR, Kim EH, Park CJ, Ryu JJ, Jang HS, Pack SP, Jo YK, Jun SH, Biomater. Res., 25, 13, 2021
  39. Andre R, Tahir MN, Link T, Jochum FD, Kolb U, Theato P, Berger R, Wiens M, Schroder HC, Muller WE, Tremel W, Langmuir, 27, 5464, 2011
  40. Cheon EJ, Kim SH, Lee DK, Jo YK, Ki MR, Park CJ, Jang HS, Ahn JS, Pack SP, Jun SH, Biotechnol. Bioprocess Eng., 26, 923, 2021
  41. Niu LN, Jiao K, Qi YP, Nikonov S, Yiu CK, Arola DD, Gong SQ, El-Marakby A, Carrilho MR, Hamrick MW, Hargreaves KM, Diogenes A, Faseb J., 26, 4517, 2012
  42. Lipinszki Z, Vernyik V, Farago N, Sari T, Puskas LG, Blattner FR, Posfai G, Gyorfy Z, ACS Synth. Biol., 7, 2656, 2018
  43. Menard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS, J. Biol. Chem., 273, 4478, 1998
  44. Bendtsen JD, Nielsen H, von Heijne G, Brunak S, J. Mol. Biol., 340, 783, 2004
  45. Coradin T, Coupé A, Livage J, Colloids Surf. B: Biointerfaces, 29, 189, 2003
  46. Oldfield CJ, Dunker AK, Annu. Rev. Biochem., 83, 553, 2014
  47. Kozlowska J, Stachowiak N, Sionkowska A, Polymers, 10, 456, 2018
  48. Jiang BP, Zhang L, Zhu Y, Shen XC, Ji SC, Tan XY, Cheng L, Liang H, J. Mater. Chem. B, 3, 3767, 2015
  49. Singh G, Dizaji HB, Puttuswamy H, Sharma S, Sustainabilty, 14, 539, 2022
  50. Plowright R, Dinjaski N, Zhou S, Belton DY, Kaplan DL, Perry CC, RSC Adv., 6, 21776, 2016
  51. Wang S, Wang X, Draenert FG, Albert O, Schröder HC, Mailänder V, Mitov G, Müller WEG, Bone, 67, 292, 2014
  52. Müller WEG, Schröder HC, Feng Q, Schlossmacher U, Link T, Wang X, J. Tissue Eng. Regen. Med., 9, E39, 2015
  53. Zhu W, Gao X, Zou X, Müller WEG, Wang S, Wang Y, Liu Y, J. Biomater Tissue Eng., 8, 258, 2018
  54. Dudik O, Amorim S, Xavier JR, Rapp HT, Silva TH, Pires RA, Reis RL, Front. Mar. Sci., 8, 637810, 2021