Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 398-404, 2023
Thermohypersensitive polydiacetylene vesicles embedded in calcium-alginate hydrogel beads
Polydiacetylenes (PDAs) are widely adapted materials for the development of sensors with liposome-like biomimetic structures, and the sensing results are often detectable with the naked eye. In addition, PDA-based sensors encapsulated within hydrogels have been intensively studied due to their superiority over solution-embedded-type and/ or solid-immobilized-type sensors. Hydrogel-type PDA sensors are more stable and equipped with physically controllable high surface areas and are thus potentially utilizable in many applications. However, PDAs have intrinsic color-transitioning properties when exposed to temperatures greater than 50-60 ℃, which cannot be used for more practical applications. In this study, we employed a calcium-alginate polymer to maximize the utility of a PDA-based hydrogeltype sensor and discovered that the sensor can be hypersensitive to temperature increases at a lower temperature range. We report the characterization of potential factors, gelation periods, and gelation agents that correlate with the sensitivity of the so-called PDA-alginate hydrogel. We expect that our findings can be applied in future research on industrially applicable developments for the maintenance of cold-chain delivery systems, temperature-sensitive chemicals, or food. Moreover, our materials will also provide a history of temperature changes because the corresponding color will not revert back even after the temperature decreases to the normal range.
[References]
  1. Wen JT, Roper JM, Tsutsui H, Ind. Eng. Chem. Res., 57(28), 9037, 2018
  2. Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L, Nat. Commun., 11(1), 1, 2020
  3. Wang DE, Yan J, Jiang J, Liu X, Tian C, Xu J, Yuan MS, Han X, Wang J, Nanoscale, 10(*), 4570, 2018
  4. Jang H, Lee P, Kim S, Kim SM, Jeon TJ, Microchim. Acta, 184(11), 4563, 2017
  5. Zhou C, You T, Jang H, Ryu H, Lee ES, Oh MH, Huh YS, Kim SM, Jeon TJ, Sensors, 20(11), 3124, 2020
  6. Park MK, Kim KW, Ahn DJ, Oh MK, Biosens. Bioelectron., 35(1), 44, 2012
  7. Silbert L, Shlush IB, Israel E, Porgador A, Kolusheva S, Jelinek R, Appl. Environ. Microbiol., 72(11), 7339, 2006
  8. Jung SH, Jang H, Lim MC, Kim JH, Shin KS, Kim SM, Kim HY, Kim YR, Jeon TJ, Anal. Chem., 87(4), 2072, 2015
  9. Hong J, Park DH, Baek S, Song S, Lee CW, Kim JM, ACS Appl. Mater. Interfaces, 7(15), 8339, 2015
  10. Yapor JP, Alharby A, Gentry-Weeks C, Reynolds MM, Alam AKMM, Li YV, ACS Omega, 2(10), 7334, 2017
  11. Bhattacharjee A, Clark R, Gentry-Weeks C, Li YV, Mater. Adv., 1(9), 3387, 2020
  12. Lee J, Kim J, Chem. Mater., 24(14), 2817, 2012
  13. Wang DE, Wang Y, Tian C, Zhang L, Han X, Tu Q, Yuan M, Chen S, Wang J, J. Mater. Chem. A, 3(43), 21690, 2015
  14. Kang DH, Jung HS, Ahn N, Yang SM, Seo S, Suh KY, Chang PS, Jeon NL, Kim J, Kim K, ACS Appl. Mater. Interfaces, 6(13), 10631, 2014
  15. Harano I, Okano C, Takayama Y, Nasuno E, Iimura K, Kato N, Appl. Mech. Mater., 863, 38, 2017
  16. Mapazi O, Matabola KP, Moutloali RM, Ngila CJ, Polymer, 149, 106, 2018
  17. Huo J, Hu Z, He G, Hong X, Yang Z, Luo S, Ye X, Li Y, Zhang Y, Zhang M, Chen H, Fan T, Zhang Y, Xiong B, Wang Z, Appl. Surf. Sci., 423, 951, 2017
  18. Kim H, Heo E, Shin MJ, Appl. Chem. Eng., 32(2), 219, 2021
  19. Park IS, Park HJ, Jeong W, Nam J, Kang Y, Shin K, Chung H, Kim JM, Macromolecules, 49(4), 1270, 2016
  20. Park CH, Kim JP, Lee SW, Jeon NL, Yoo PJ, Sim SJ, Adv. Funct. Mater., 19(23), 3703, 2009
  21. Choi Y, Jang J, Koo HJ, Tanaka M, Lee KH, Choi J, Biotechnol. Bioprocess Eng., 26(1), 71, 2021
  22. Park B, Ghoreishian SM, Kim Y, Park BJ, Kang SM, Huh YS, Chemosphere, 263, 128266, 2021
  23. Lee KY, Mooney DJ, Prog. Polym. Sci, 37(1), 106, 2012
  24. Kwon JH, Song JE, Yoon B, Kim JM, Cho EC, Bull. Korean Chem. Soc., 35(6), 1809, 2014
  25. Wang H, Yu J, Gao X, Ding H, IOP Conf. Ser. Mater. Sci. Eng., 729, 012088, 2020
  26. Oh J, Eom MS, Han MS, Analyst, 144(23), 7064, 2019
  27. Kolusheva S, Shahal T, Jelinek R, J. Am. Chem. Soc., 122(5), 776, 2000
  28. Mørch AA, Donati I, Strand BL, Skja G, Biomacromolecules, 7, 1471, 2006
  29. Erdem IG, Ak MM, J. Food Process. Preserv., 45(1), 1, 2021
  30. Wang DE, Gao X, Li G, Xue T, Yang H, Xu H, Sens. Actuators B-Chem., 289, 85, 2019
  31. Topuz F, Henke A, Richtering W, Groll J, Soft Matter, 8(18), 4877, 2012
  32. N’Tsoukpoe KE, Rammelberg HU, Lele AF, Korhammer K, Watts BA, Schmidt T, Ruck WKL, Appl. Therm. Eng., 75, 513, 2015
  33. Huang Q, Wu W, Ai K, Liu J, Front. Chem., 8, 1, 2020
  34. Pankaew A, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 608, 125626, 2021
  35. Khanantong C, Charoenthai N, Phuangkaew T, Kielar F, Traiphol N, Traiphol R, Colloids Surf. A: Physicochem. Eng. Asp., 553, 337, 2018
  36. Tang J, Weston M, Kuchel RP, Lisi F, Liang K, Chandrawati R, Mater. Adv., 1(6), 1745, 2020