Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 379-389, 2023
Low generational cystamine core PAMAM derivatives modified with nuclear localization signal derived from lactoferrin as a gene carrier
Polyamidoamine (PAMAM) dendrimer has received much attention as an alternative to polyethylenimine (PEI) for gene delivery due to the relatively low cytotoxicity. In general, low generational PAMAM dendrimers have better biocompatibility than high generational dendrimers but suffer reduced transfection efficiency. Transfection efficiency can be improved by the modification of the polymer with nuclear localization signal (NLS) peptides. In this study, we modified low generational cystamine core PAMAM dendrimers (cPAMAM, generation 0, 1 and 2) with a lactoferrin-derived nuclear localization signal (NLS) peptide and evaluated transfection efficiency and cytotoxicity as a function of the number of conjugated NLS peptides using NIH 3T3, MCF-7 and human dermal fibroblasts (HDFs). The transfection efficiency of NLS-modified cPAMAM G2 was the highest among the cPAMAM derivatives and similar or higher than PEI 25 kDa. The cytotoxicity of cPAMAM derivatives was generation-dependent and significantly lower than PEI 25 kDa. Our study indicates that cPAMAM G2 conjugated with NLS is a promising candidate for gene delivery applications.
[References]
  1. Cring MR, Sheffield VC, Gene Ther., 29, 3, 2020
  2. Ramamoorth M, Narvekar A, J. Clin. Diagn., 9(1), GE01, 2015
  3. Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR, Adv. Healthc. Mater., 10(1), 2001238, 2021
  4. Ayuso E, Mol. Ther. Methods Clin. Dev., 3, 15049, 2016
  5. Wu P, Chen H, Jin R, Weng T, Ho JK, You C, Zhang L, Wang X, Han C, J. Transl. Med., 16(1), 1, 2018
  6. Rinoldi C, Zargarian S, Nakielski SP, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Small Method., 5(9), 2100402, 2021
  7. Zhu L, Mahato RI, Expert Opin. Drug Deliv., 7(10), 1209, 2010
  8. Cheng Y, Yumul RC, Pun SH, Angew. Chem.-Int. Edit., 55(39), 12013, 2016
  9. Lee YS, Kim SW, J. Control. Release, 190, 424, 2014
  10. Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, Jiang C, Biomaterials, 31(19), 5246, 2010
  11. Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS, J. Control. Release, 93(3), 389, 2003
  12. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW, Bioconjugate Chem., 11(5), 637, 2000
  13. Lächelt U, Wagner E, Chem. Rev., 115(19), 11043, 2015
  14. Lee J, Jung J, Kim YJ, Lee E, Choi JS, Int. J. Pharm., 459(1-2), 10, 2014
  15. Ma K, Hu MX, Qi Y, Zou JH, Qiu LY, Jin Y, Ying XY, Sun HY, Biomaterials, 30(30), 6109, 2009
  16. Bae YM, Choi H, Lee S, Kang SH, Kim YT, Nam K, Park JS, Lee M, Choi JS, Bioconjugate Chem., 18(6), 2029, 2007
  17. Choi JS, Ko KS, Park JS, Kim YH, Kim SW, Lee M, Int. J. Pharm., 320(1-2), 171, 2006
  18. Boulikas T, Crit. Rev. Eukaryot. Gene Expr., 3(3), 193, 1993
  19. Pourianazar NT, Mutlu P, Gunduz U, J. Nanoparticle Res., 16(4), 1, 2014
  20. Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A, Mol. Ther., 11(6), 990, 2005
  21. Li X, Hao S, Han A, Yang Y, Fang G, Liu J, Wang S, J. Mater. Chem. B, 7(25), 4008, 2019
  22. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’emanuele A, Int. J. Pharm., 252(1-2), 263, 2003
  23. Haensler J, Szoka Jr FC, Bioconjugate Chem., 4(5), 372, 1993
  24. Kumari S, Kondapi AK, Int. J. Biol. Macromol., 108, 401, 2018
  25. Penco S, Scarfi S, Giovine M, Damonte G, Millo E, Villaggio B, Passalacqua M, Pozzolini M, Garrè C, Benatti U, Biotechnol. Appl. Biochem., 34(3), 151, 2001
  26. Lee J, Lee S, Kwon YE, Kim YJ, Choi JS, Macromole. Res., 27(4), 360, 2019
  27. Thuy LT, Mallick S, Choi JS, Int. J. Pharm., 492(1-2), 233, 2015
  28. Wade AM, Tucker HN, J. Nutr. Biochem., 9(6), 315, 1998
  29. Mecke A, Uppuluri S, Sassanella TM, Lee DK, Ramamoorthy A, Baker Jr JR, Bradford GO, Holl MMB, Chem. Phys. Lipids, 132(1), 3, 2004
  30. Geall AJ, Blagbrough IS, J. Pharm. Biomed., 22(5), 849, 2000
  31. Eliyahu H, Barenholz Y, Domb A, Molecules, 10(1), 34, 2005
  32. Monnery BD, Biomacromolcules, 22(10), 4060, 2021
  33. Bus T, Traeger A, Schubert US, J. Mater. Chem. B, 6(43), 6904, 2018
  34. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E, Gene Ther., 7(5), 401, 2000
  35. Pantos A, Tsogas I, Paleos CM, Biochim. Biophys. Acta-Biomembr., 1778(4), 811, 2008
  36. Sakai N, Takeuchi T, Futaki S, Matile S, Chembiochem, 6(1), 114, 2005
  37. Chang H, Zhang J, Wang H, Lv J, Cheng Y, Biomacromolecules, 18(8), 2371, 2017
  38. Wang F, Hu K, Cheng Y, Acta Biomater., 29, 94, 2016
  39. Tsogas I, Tsiourvas D, Nounesis G, Paleos CM, Langmuir, 22(26), 11322, 2006
  40. Choi JS, Nam K, Park JY, Kim JB, Lee JK, Park JS, J. Control. Release, 99(3), 445, 2004
  41. Panté N, Kann M, J. Mol. Cell Biol., 13(2), 425, 2002
  42. Naha PC, Davoren M, Lyng FM, Byrne H, Toxicol. Appl. Pharmacol., 246(1-2), 91, 2010