Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 352-360, 2023
Conductive double-network hydrogel composed of sodium alginate, polyacrylamide, and reduced graphene oxide
Conductive hydrogels have garnered considerable attention as novel materials for biomedical devices and tissue engineering because they exhibit electroactivity and tissue-like softness. Various composites and manufacturing techniques have been developed in this regard. However, conductive hydrogels often exhibit poor mechanical properties (e.g., low toughness), which impedes their biomedical application. In this study, we fabricated double network (DN) hydrogels composed of sodium alginate (SA), polyacrylamide (PAAm), and graphene oxide (GO) to promote elasticity, toughness, and mechanical strength. Subsequently, we reduced the composite hydrogels to improve electrical conductivity by converting GO to more conductive reduced graphene oxide (rGO). The electrical, electrochemical, and mechanical properties of the produced hydrogels, r(GO/SA/PAAm), were characterized. Particularly, crosslinking density and reducing time were varied to obtain optimal conditions. The produced r(GO/SA/PAAm) demonstrated excellent electrical conductivity, mechanical strength, and toughness compared to homopolymers and unreduced DN hydrogels. We demonstrated that conductive DN hydrogels are suitable strain sensors. Electrically conductive and mechanically strong hydrogels will be beneficial in various biomedical applications, such as tissue engineering scaffolds and bioelectrodes.
[References]
  1. Bahram M, Mohseni N, Moghtader M, An introduction to hydrogels and some recent applications, IntechOpen (2016).
  2. Ahmed EM, J. Adv. Res., 6, 105, 2015
  3. Chai Q, Jiao Y, Yu X, Gels, 3, 1, 2017
  4. Jeong H, Lee DY, Yang DH, Song YS, Macromol. Res., 30, 223, 2022
  5. Liu K, Wei S, Song L, Liu H, Wang T, J. Agric. Food Chem., 68, 7269, 2020
  6. Ren J, Wang X, Zhang A, Zhang L, Zhao L, Li Y, Yang W, Macromol. Res., 28, 1253, 2020
  7. Zhang W, Feng P, Chen J, Sun Z, Zhao B, Prog. Polym. Sci, 88, 220, 2019
  8. Kour R, Arya S, Young SJ, Gupta V, Bandhoria P, Khosla A, J. Electrochem. Soc., 167, 037555, 2020
  9. Abergel DSL, Apalkov V, Berashevich J, Ziegler K, Chakraborty T, Adv. Phys. Org. Chem., 59, 261, 2010
  10. Raslan A, del Burgo LS, Ciriza J, Pedraz JL, Int. J. Pharm., 580, 119226, 2020
  11. Singh RK, Kumar R, Singh DP, RSC Adv., 6, 64993, 2016
  12. Ray SC, Applications of graphene and graphene-oxide based nanomaterials, William Andrew Publishing, Oxford (2015).
  13. Yue R, Liu Y, Xia S, Xu S, Cao S, Macromol. Res., 30, 477, 2022
  14. Raidongia K, Tan ATL, Huang J, in Carbon nanotubes and graphene (Second Edition), Tanaka K, Iijima S, Eds., Elsevier, Oxford (2014).
  15. Kang MS, Jeong SJ, Lee SH, Kim B, Hong SW, Lee JH, Han DW, Biomater. Res., 25, 4, 2021
  16. Jo H, Sim M, Kim S, Yang S, Yoo Y, Park JH, Yoon TH, Kim MG, Lee JY, Acta Biomater., 48, 100, 2017
  17. Sperling LH, Interpenetrating polymer networks: An overview, In Klempner D, Sperling LH, Utracki LA, (Eds.), Interpenetrating Polymer Networks, American Chemical Society (1994).
  18. Lohani A, Singh G, Bhattacharya SS, Verma A, J. Drug Deliv., 2014, 1, 2014
  19. Naficy S, Kawakami S, Sadegholvaad S, Wakisaka M, Spinks GM, J. Appl. Polym. Sci., 130, 2504, 2013
  20. Nakajima T, Gong JP, in Encyclopedia of polymeric nanomaterials, Kobayashi S, Müllen K, Eds., Springer, Berlin, Heidelberg (2015).
  21. O JS, Lee EJ, Macromol. Res., 29, 383, 2021
  22. Damiati S, Macromol. Res., 28, 1046, 2020
  23. Chen Q, Chen H, Zhu L, Zheng J, J. Mater. Chem. B, 3, 3654, 2015
  24. Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L, Carbohydr. Polym., 186, 377, 2018
  25. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS, Adv. Phys. Org. Chem., 60, 413, 2011
  26. Lucchese MM, Stavale F, Ferreira EH, Vilani C, Moutinho MVO, Capaz RB, Achete CA, Jorio A, Carbon, 48, 1592, 2010
  27. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558, 2007
  28. Childres I, Jauregui LA, Park W, Cao H, Chen YP, Dev. Photon Mater. Res., 1, 403, 2013
  29. Runyan WR, Semiconductor measurements and instrumentation, McGraw-Hill, New York (1975).
  30. Naftaly M, Das S, Gallop J, Pan K, Alkhalil F, Kariyapperuma D, Constant S, Ramsdale C, Hao L, Electronics, 10, 960, 2021
  31. Liu S, Li L, ACS Appl. Mater. Interfaces, 9, 26429, 2017
  32. Li H, Zheng H, Tan YJ, Tor SB, Zhou K, ACS Appl. Mater. Interfaces, 13, 12814, 2021
  33. Qi X, Simsek S, Chen B, Rao J, Int. J. Biol. Macromol., 165, 1675, 2020
  34. Lee S, Jeon IS, Jho JY, Macromol. Res., 30, 295, 2022
  35. Shin H, Lim MY, Kong S, Kim S, Lee SW, Lee Y, Lee JC, Macrocol. Res., 29, 487, 2021
  36. Sabater i Serra R, Molina-Mateo J, Torregrosa-Cabanilles C, Andrio-Balado A, Dueñas JMM, Serrano-Aroca A, Polymers, 12, 702, 2020
  37. Serrano-Aroca A, Iskandar L, Deb S, Eur. Polym. J., 103, 198, 2018
  38. Zheng H, Yang J, Han S, J. Appl. Polym. Sci., 133, 43616, 2016
  39. Park S, Lee K, Bozoklu G, Cai W, Nguyen ST, Ruoff RS, ACS Nano, 2, 572, 2008