Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 276-285, 2023
Recent development of machine learning models for the prediction of drug-drug interactions
Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polypharmacy. To address this challenge, machine learning models that predict drug-drug interactions (DDIs) have actively been developed in recent years. In particular, the growing volume of drug datasets and the advances in machine learning have facilitated the model development. In this regard, this review discusses the DDI-predicting machine learning models that have been developed since 2018. Our discussion focuses on dataset sources used to develop the models, featurization approaches of molecular structures and biological information, and types of DDI prediction outcomes from the models. Finally, we make suggestions for research opportunities in this field.
[References]
  1. Davies EA, O'Mahony MS, Br. J. Clin. Pharmacol., 80, 796, 2015
  2. Cho HJ, Chae J, Yoon SH, Kim DS, Front. Pharmacol., 13, 866318, 2022
  3. Iloanusi S, Mgbere O, Essien EJ, J. Am. Pharm. Assoc., 61, e14, 2003
  4. Ryu JY, Kim HU, Lee SY, Proc. Natl. Acad. Sci. U. S. A., 115, E4304, 2018
  5. Nyamabo AK, Yu H, Shi JY, Brief. Bioinform., 22, 1, 2021
  6. Pang S, Zhang Y, Song T, Zhang X, Wang X, Rodriguez-Paton A, Brief. Bioinform., 23, 1, 2022
  7. Lin S, Wang Y, Zhang L, Chu Y, Liu Y, Fang Y, Jiang M, Wang Q, Zhao B, Xiong Y, Wei DQ, Brief. Bioinform., 23, 1, 2022
  8. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Nucleic Acids Res., 46, D1074, 2018
  9. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J, Nucleic Acids Res., 34, D668, 2006
  10. Tatonetti NP, Ye PP, Daneshjou R, Altman RB, Sci. Transl. Med., 4, 125ra31, 2012
  11. Zitnik M, Agrawal M, Leskovec J, Bioinformatics, 34, i457, 2018
  12. Ioannidis VN, Song X, Manchanda S, Li M, Pan X, Zheng D, Ning X, Zeng X, Karypis G, (2021).
  13. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M, Nucleic Acids Res., 38, D355, 2010
  14. Asada M, Miwa M, Sasaki Y, Bioinformatics, 37, 1739, 2021
  15. Lee K, Lee S, Jeon M, Choi J, Kang J, 2012 IEEE Int. Conf. Bioinf. Biomed., 1, 2012
  16. Ryu S, Kwon Y, Kim WY, Chem. Sci., 10, 8438, 2019
  17. Elbadawi M, Gaisford S, Basit AW, Drug Discov. Today, 26, 769, 2021
  18. Weininger D, J. Chem. Inf. Comput. Sci., 28, 31, 1988
  19. Jeon J, Kang S, Kim HU, Nat. Prod. Rep., 38, 1954, 2021
  20. Rogers D, Hahn M, J. Chem. Inf. Model., 50, 742, 2010
  21. Deng Y, Xu X, Qiu Y, Xia J, Zhang W, Liu S, Bioinformatics, 36, 4316, 2020
  22. Feng YH, Zhang SW, Shi JY, BMC Bioinformatics, 21, 419, 2020
  23. Moriwaki H, Tian YS, Kawashita N, Takagi T, J. Cheminform., 10, 4, 2018
  24. Cao DS, Xu QS, Hu QN, Liang YZ, Bioinformatics, 29, 1092, 2013
  25. Kipf TN, Welling M, arXiv preprint arXiv:1609.02907 (2016).
  26. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y, arXiv preprint arXiv.1710.10903 (2017).
  27. Feng YH, Zhang SW, Zhang QQ, Zhang CH, Shi JY, Anal. Biochem., 646, 114631, 2022
  28. Chen Y, Ma T, Yang X, Wang J, Song B, Zeng X, Bioinformatics, 37, 2651, 2021
  29. Yu Y, Huang K, Zhang C, Glass LM, Sun J, Xiao C, Bioinformatics, 37, 2988, 2021
  30. Ren ZH, Yu CQ, Li LP, You ZH, Guan YJ, Wang XF, Pan J, Brief. Funct. Genomics, 21, 216, 2022
  31. Lee G, Park C, Ahn J, BMC Bioinformatics, 20, 415, 2019
  32. Kim E, Nam H, J. Cheminform., 14, 9, 2022
  33. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O'Donnell L, Oster S, Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M, Nucleic Acids Res., 45, D369, 2017
  34. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Nat. Genet., 25, 25, 2000
  35. C. The Gene Ontology, Nucleic Acids Res., 45, D331, (2017).
  36. Hao X, Chen Q, Pan H, Qiu J, Zhang Y, Yu Q, Han Z, Du X, Granular Computing, 8, 67, 2023
  37. Trouillon T, Welbl J, Riedel S, Gaussier E, Bouchard G, ICML, 48, 2071, 2016
  38. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Adv. Neural Inf. Process. Syst., 32, 1, 2019
  39. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, arXiv preprint arXiv:1603.04467 (2016).
  40. Zhang W, Chen Y, Liu F, Luo F, Tian G, Li X, BMC Bioinformatics, 18, 18, 2017
  41. Zhang W, Liu Y, Wang L, Zhou J, Du J, Goh RSM, ICCCRI, 18, 2017
  42. Chen X, Liu X, Wu J, Methods, 179, 47, 2020
  43. Himmelstein DS, Baranzini SE, PLoS Comput. Biol., 11, e1004259, 2015
  44. Zhang HR, Min F, Shi B, Inform. Sci., 378, 444, 2017
  45. Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, Lin SM, Zhang W, Zhang P, Sun H, Bioinformatics, 36, 1241, 2020
  46. Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Cell, 171, 1437, 2017
  47. Nyamabo AK, Yu H, Liu Z, Shi JY, Brief. Bioinform., 23, 1, 2022
  48. He C, Liu Y, Li H, Zhang H, Mao Y, Qin X, Liu L, Zhang X, BMC Bioinformatics, 23, 224, 2022
  49. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P, Mol. Syst. Biol., 6, 343, 2010
  50. Kuhn M, Letunic I, Jensen LJ, Bork P, Nucleic Acids Res., 44, D1075, 2016
  51. Zhuang L, Wang H, Li W, Liu T, Han S, Zhang H, Soft Computing, 26, 11795, 2022
  52. Yu H, Dong W, Shi J, Inform. Sci., 582, 167, 2022