Issue
Korean Journal of Chemical Engineering,
Vol.40, No.2, 267-275, 2023
Jammed microgels fabricated via various methods for biological studies
Microgels, hydrogels fabricated in microscale via various methods, can be jammed, and the jammed state can be influenced by some factors such as volume fraction (Ø), pressure and temperature. Compared to bulk hydrogels, jammed microgels have distinct characteristics. Structures of jammed microgels, stable through a balance of effective forces applied to them, can be changed by application of forces or pressure, implying shear-thinnning properties. Additionally, the ability to maintain structures under a static condition and porous internal structures of them has been extensively exploited in researches. Additional materials can be involved in jammed microgels for additional features (e.g., conductivity), and overall mechanical properties can be also controlled. These characteristics have been used in diverse biological studies by developing them as injectable scaffolds, drug delivery vehicles and inks and support bath in 3D printing processes. In this review, jamming processes, characteristics of jammed microgels, fabrication methods of microgels and applications of jammed microgels are discussed to provide a comprehensive understanding of jammed microgels and promote their use in diverse researches.
[References]
  1. Cai W, Gupta RB, Kirk‐Othmer Encycl. Chem. Technol., 1, 2012
  2. Lee KY, Mooney DJ, Chem. Rev., 101, 1869, 2001
  3. Hoffman AS, Adv. Drug Deliv. Rev., 64, 18, 2012
  4. Daly AC, Riley L, Segura T, Burdick JA, Nat. Rev. Mater., 5, 20, 2020
  5. Riley L, Schirmer L, Segura T, Curr. Opin. Biotechnol., 60, 1, 2019
  6. Cheng W, Zhang J, Liu J, Yu Z, View, 1, 20200060, 2020
  7. Purdon Jr JR, Mate RD, J. Polym. Sci. A: Polym. Chem., 8, 1306, 1970
  8. Richtering W, Saunders BR, Soft Matter, 10, 3695, 2014
  9. Gogoi N, Chowdhury D, J. Mater. Chem. B, 2, 4089, 2014
  10. Hu X, Long L, Gong T, Zhang J, Yan J, Xue Y, Chemosphere, 240, 124860, 2020
  11. Sohail A, Turner MS, Prabawati EK, Coombes AGA, Bhandari B, Int. J. Food Microbiol., 157, 162, 2012
  12. Ketz RJ, Prud’homme RK, Graessley WW, Rheol. Acta, 27, 531, 1988
  13. Cates ME, Wittmer JP, Bouchaud JP, Claudin P, Phys. Rev. Lett., 81, 1841, 1998
  14. O’Hern CS, Silbert LE, Liu AJ, Nagel SR, Phys. Rev. E, 68, 19, 2003
  15. Liu AJ, Nagel SR, Nature, 396, 21, 1998
  16. Qazi TH, Muir VG, Burdick JA, ACS Biomater. Sci. Eng., 8, 1427, 2022
  17. Highley CB, Song KH, Daly AC, Burdick JA, Adv. Sci., 6, 1801076, 2019
  18. Moon D, Lee MG, Sun JY, Song KH, Doh J, Macromol. Rapid Commun., e2200271, 2022
  19. Charlet A, Hirsch M, Schreiber S, Amstad E, Small, 18, 2107128, 2022
  20. O’Bryan CS, Kabb CP, Sumerlin BS, Angelini TE, ACS Appl. Bio Mater., 2, 1509, 2019
  21. Mirdamadi E, Muselimyan N, Koti P, Asfour H, Sarvazyan N, 3D Print. Addit. Manuf., 6, 158, 2019
  22. Griffin DR, Weaver WM, Scumpia PO, Di Carlo D, Segura T, Nat. Mater., 14, 737, 2015
  23. Edwards SD, Hou S, Brown JM, Boudreau RD, Lee Y, Kim YJ, Jeong KJ, ACS Appl. Bio Mater., 5, 2786, 2022
  24. Miksch CE, Skillin NP, Kirkpatrick BE, Hach GK, Rao VV, White TJ, Anseth KS, Small, 18, 2200951, 2022
  25. Fang J, Koh J, Fang Q, Qiu H, Archang MM, Hasani-Sadrabadi MM, Miwa H, Zhong X, Sievers R, Gao DW, Lee R, Di Carlo D, Li S, Adv. Funct. Mater., 30, 2070289, 2020
  26. Pang Q, Zhao J, Zhang S, Zhang X, J. Biomater. Sci.-Polym. Ed., 31, 2252, 2020
  27. Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, Shih TY, Verbeke CS, Bhatta D, Dranoff G, Mooney DJ, Nat. Commun., 6, 7556, 2015
  28. Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ, Proc. Natl. Acad. Sci., 109, 19590, 2012
  29. Duin S, Schütz K, Ahlfeld T, Lehmann S, Lode A, Ludwig B, Gelinsky M, Adv. Healthc. Mater., 8, 1801631, 2019
  30. Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M, Biofabrication, 7, 035006, 2015
  31. Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA, ACS Biomater. Sci. Eng., 2, 1743, 2016
  32. Cao Y, Zhang C, Shen W, Cheng Z, Yu LL, Ping Q, J. Control. Release, 120, 186, 2007
  33. Ishii S, Kaneko J, Nagasaki Y, Biomaterials, 84, 210, 2016
  34. Desai RM, Koshy ST, Hilderbrand SA, Mooney DJ, Joshi NS, Biomaterials, 50, 30, 2015
  35. Silva EA, Mooney DJ, J. Thromb. Haemost., 5, 590, 2007
  36. Silva EA, Kim ES, Kong HJ, Mooney DJ, Proc. Natl. Acad. Sci., 105, 14347, 2008
  37. Jeon O, Lee YB, Hinton TJ, Feinberg AW, Alsberg E, Mater. Today Chem., 122, 61, 2019
  38. de Rutte JM, Koh J, Di Carlo D, Adv. Funct. Mater., 29, 1900071, 2019
  39. Xie ZT, Kang DH, Matsusaki M, Soft Matter, 17, 8769, 2021
  40. Basu A, Xu Y, Still T, Arratia PE, Zhang Z, Nordstrom KN, Rieser JM, Gollub JP, Durian DJ, Yodh AG, Soft Matter, 10, 3027, 2014
  41. Ikeda A, Berthier L, Biroli G, J. Chem. Phys., 138, 12A507, 2013
  42. Weeks ER, Stat. Phys. Complex Fluids, 2, 87, 2007
  43. Ellenbroek WG, Somfai E, van Hecke M, van Saarloos W, Phys. Rev. Lett., 97, 258001, 2006
  44. van Hecke M, J. Phys. Condens. Matter, 22, 33101, 2009
  45. Torquato S, Stillinger FH, Rev. Mod. Phys., 82, 2633, 2010
  46. Nussinov Z, Johnson P, Graf MJ, Balatsky AV, Phys. Rev. B, 87, 184202, 2013
  47. James NM, Xue H, Goyal M, Jaeger HM, Soft Matter, 15, 3649, 2019
  48. Ghosh A, Chaudhary G, Kang JG, Braun PV, Ewoldt RH, Schweizer KS, Soft Matter, 15, 1038, 2019
  49. Conley GM, Zhang C, Aebischer P, Harden JL, Scheffold F, Nat. Commun., 10, 1, 2019
  50. Jiang P, Yan C, Guo Y, Zhang X, Cai M, Jia X, Wang X, Zhou F, Biomater. Sci., 7, 1805, 2019
  51. Zhang H, Cong Y, Osi AR, Zhou Y, Huang F, Zaccaria RP, Chen J, Wang R, Fu J, Adv. Funct. Mater., 30, 1, 2020
  52. Xin S, Chimene D, Garza JE, Gaharwar AK, Alge DL, Biomater. Sci., 7, 1179, 2019
  53. Zhao P, Wang J, Chen C, Wang J, Liu G, Nandakumar K, Li Y, Wang L, Micromachines, 13, 200, 2022
  54. Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA, Adv. Sci., 6, 1901229, 2019
  55. Hirsch M, Charlet A, Amstad E, Adv. Funct. Mater., 31, 2005929, 2021
  56. Moreira A, Carneiro J, Campos JBLM, Miranda JM, Microfluid. Nanofluidics, 25, 10, 2021
  57. Subramaniam AB, Abkarian M, Stone HA, Nat. Mater., 4, 553, 2005
  58. Zoratto N, Di Lisa D, de Rutte J, Sakib MN, e Silva ARA, Tamayol A, Di Carlo D, Khademhosseini A, Sheikhi A, Bioeng. Transl. Med., 5, 1, 2020
  59. Teh SY, Lin R, Hung LH, Lee AP, Lab Chip, 8, 198, 2008
  60. Seiffert S, Weitz DA, Polymer, 51, 5883, 2010
  61. Headen DM, García JR, García AJ, Microsystems Nanoeng., 4, 1, 2018
  62. Zhang J, Li X, Zhang D, Xiu Z, J. Microencapsul., 24, 303, 2007
  63. Lee BB, Ravindra P, Chan ES, Chem. Eng. Technol., 36, 1627, 2013
  64. Qayyum AS, Jain E, Kolar G, Kim Y, Sell SA, Zustiak SP, Biofabrication, 9, 025019, 2017
  65. Bressel TAB, Paz AH, Baldo G, Lima EOC, Matte U, Saraiva-Pereira ML, Genet. Mol. Biol., 31, 136, 2008
  66. Morimoto Y, Onuki M, Takeuchi S, Adv. Healthc. Mater., 6, 1, 2017
  67. Kim PH, Yim HG, Choi YJ, Kang BJ, Kim J, Kwon SM, Kim BS, Hwang NS, Cho JY, J. Control. Release, 187, 1, 2014
  68. Molley TG, Jalandhra GK, Nemec SR, Tiffany AS, Harley BAC, Hung T, Kilian KA, bioRxiv, 2020.08.30.274654 (2020).
  69. Leong W, Lau TT, Wang DA, Acta Biomater., 9, 6459, 2013
  70. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW, Science, 365, 482, 2019
  71. Roh S, Parekh DP, Bharti B, Stoyanov SD, Velev OD, Adv. Mater., 29, 1, 2017
  72. Gehlen DB, Jürgens N, Omidinia-Anarkoli A, Haraszti T, George J, Walther A, Ye H, De Laporte L, Macromol. Rapid Commun., 41, 1, 2020
  73. Song K, Compaan AM, Chai W, Huang Y, ACS Appl. Mater. Interfaces, 12, 22453, 2020
  74. Zhao D, Liu Y, Liu B, Chen Z, Nian G, Qu S, Yang W, ACS Appl. Mater. Interfaces, 13, 13714, 2021
  75. Hinton, Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H.-J. Shue, M. H. Ramadan, A.R. Hudson and A.W. Feinberg, Sci. Adv., 1, e1500758, 2015