Issue
Korean Journal of Chemical Engineering,
Vol.40, No.1, 205-214, 2023
Downstream process development of biobutanol using deep eutectic solvent
Biobutanol is produced from lignocellulose fermentation. Owing to the abundance of this feedstock and the similarities between the properties of biobutanol and gasoline, biobutanol represents a promising alternative to current crude-oil-based automotive fuel. Environmentally friendly recovery of biobutanol from the fermentation products is essential for achieving carbon-neutral production. Because extraction substantially lowers the energy demand for distillation, an eco-friendly deep eutectic solvent (DES) was applied for biobutanol extraction here, and the non-random two-liquid (NRTL) parameters that were compatible with the process design program were derived using experimental measurements and molecular simulations. For the liquid-liquid equilibrium (LLE) parameter estimation, a non-iterative procedure was introduced with a suitable arrangement of binary parameters for the DES. Compared to previous studies, the process design results indicate a marked reduction in energy consumption for the near-complete recovery of high-purity biobutanol, requiring a comparable investment.
[References]
  1. Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK, Rev. Chem. Eng., 35, 475, 2019
  2. Fomo G, Madzimbamuto TN, Ojumu TV, Sustainability, 12, 5244, 2020
  3. Baritugo KA, Son JN, Sohn YJ, Kim HT, Joo JC, Choi JI, Park SJ, Korean J. Chem. Eng., 38, 1291, 2021
  4. D'Alessandro EB, Soares AT, Lopes RG, Derner RB, Antoniosi NR, Chem. Eng. Commun., 208, 965, 2021
  5. Kang S, Realff MJ, Yuan YH, Chance R, Lee JH, Korean J. Chem. Eng., 39, 1524, 2022
  6. Verma R, Banerjee T, Glob. Chall., 3, 1900024, 2019
  7. Verma R, Naik PK, Diaz I, Banerjee T, Fluid Phase Equilib., 533, 112949, 2021
  8. Peng Y, Lu X, Liu B, Zhu J, Fluid Phase Equilib., 448, 128, 2017
  9. Souza GAL, Silva LYA, Martinez PFM, J. Chem. Thermodyn., 158, 106444, 2021
  10. Amiri H, Karimi K, Bioresour. Technol., 270, 702, 2018
  11. Menchavez RN, Ha SH, Korean J. Chem. Eng., 36, 909, 2019
  12. Amiri H, Karimi K, Zilouei H, Bioresour. Technol., 152, 450, 2014
  13. Calhan A, Deniz S, Romero J, Hasanoglu A, Korean J. Chem. Eng., 36, 1489, 2019
  14. Ibarra-Gonzalez P, Christensen LP, Rong BG, Chem. Eng. Commun., 209, 529, 2021
  15. Bharathiraja B, Jayamuthunagai J, Sudharsanaa T, Bharghavi A, Praveenkumar R, Chakravarthy M, Yuvaraj D, Renew. Sust. Energ. Rev., 68, 788, 2017
  16. Oh HW, Lee SC, Woo HC, Kim YH, Chem. Eng. Technol., 44, 2316, 2021
  17. Paduszyński K, Więckowski M, Okuniewski M, Domańska U, J. Mol. Liq., 286, 110819, 2019
  18. Arce PF, Guimaraes DHP, de Aguirre LR, Chem. Eng. Commun., 206, 1273, 2021
  19. Renon H, Prausnitz JM, AIChE J., 14, 135, 1968
  20. Jha D, Haider MB, Kumar R, Balathanigaimani MS, Chem. Eng. Res. Des., 111, 218, 2016
  21. Wu LH, Wu L, Liu YS, Guo XQ, Hu YF, Cao R, Pu XY, Wang X, Chem. Eng. Res. Des., 129, 197, 2018
  22. Woo HC, Kim YH, AIChE J., 65, e16665, 2019
  23. Shang X, Ma S, Pan Q, Li J, Sun Y, Ji K, Sun L, Chem. Eng. Res. Des., 148, 298, 2019
  24. Saravi SH, Ravichandran A, Khare R, Chen CC, AIChE J., 65, 1315, 2019
  25. Tanveer S, Chen CC, AIChE J., 66, 2020
  26. Mirza NR, Nicholas NJ, Wu Y, Kentish S, Stevens GW, J. Chem. Eng. Data, 60, 1844, 2015
  27. Dongmin H, Yanhong C, Chem. Eng. Process., 131, 203, 2018
  28. Shu G, Tan Y, Cui L, Zhang Y, Zhang L, J. Chem. Eng. Data, 65, 3029, 2020
  29. Michelsen ML, Fluid Phase Equilib., 9, 21, 1982
  30. Marcilla A, Reyes-Labarta JA, Olaya MM, Fluid Phase Equilib., 433, 243, 2017
  31. Li Z, Mumford KA, Smith KH, Chen J, Wang Y, Stevens GW, Ind. Eng. Chem. Res., 55, 2852, 2016
  32. Denes F, Lang P, Lang-Lazi M, IChemE Symposium Series. Inst. Chem. Eng., London., 152, 877, 2006
  33. Dubbeldam D, Calero S, Ellis DE, Snurr RQ, (accessed on April 15, 2022).
  34. Dubbeldam D, Calero S, Ellis DE, Snurr RQ, Mol. Simul., 42, 81, 2016
  35. Seo CH, Kim YH, Sep. Purif. Technol., 209, 1, 2019
  36. Lee SC, Woo HC, Kim YH, Chem. Eng. Process., 160, 108286, 2021
  37. Lee SC, Woo HC, Kim YH, Fuel, 310, 122393, 2022
  38. Rodríguez NR, González ASB, Tijssen PMA, Kroon MC, Fluid Phase Equilib., 385, 72, 2015
  39. Patrascu I, Bildea CS, Kiss AA, Sep. Purif. Technol., 177, 49, 2017
  40. Aspentech, Aspen Technology, Inc., Bedford. MA (2015).
  41. Douglas JM, Conceptual design of chemical processes, McGraw-Hill, New York (1988).
  42. Kemp IC, Pinch analysis and process integration, 2nd ed., Butterworth-Heinemann, Burlington, MA (2007).
  43. Turton R, Baille RC, Whiting WB, Shaeiwitz JA, Analysis, synthesis, Upper Saddle River, New Jersey (2003).
  44. Olujic Z, Sun L, de Rijke A, Jansens PJ, Energy, 31, 3083, 2006
  45. Kim YH, Energy, 70, 435, 2014
  46. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, National Renewable Energy Laboratory, Golden, CO (2002).
  47. Yan Q, Ma G, Wang W, J. Phys.-Conf. Ser., 2076, 012037, 2021
  48. Sandvik, Sandvik AB, Sandviken, Sweden, (2022).
  49. Ayaz H, Chinnasamy V, Cho H, Materials, 14, 7418, 2021
  50. Aneke M, Gorgens J, Fuel, 150, 583, 2015
  51. Contreras-Vargas CA, Gomez-Castro FI, Sanchez-Ramirez E, Segovia-Hernandez JG, Morales-Rodriguez R, Gamino-Arroyo Z, Chem. Eng. Technol., 42, 1088, 2019
  52. Kraemer K, Harwardt A, Bronneberg R, Marquardt W, Comput. Chem. Eng., 35, 949, 2011