Issue
Korean Journal of Chemical Engineering,
Vol.40, No.1, 195-204, 2023
Pervaporation performance of BTESE/TEOS-derived organosilica membrane and its stability in isopropanol aqueous solutions
Organosilica membranes derived from bis(triethoxysilyl)ethane (BTESE) and tetraethyl orthosilicate (TEOS) were prepared by sol-gel method on porous α-Al2O3 supports and applied in pervaporation dehydration of isopropanol (IPA) aqueous solutions. The permeation characteristics of membranes in IPA/water mixture were evaluated for preparation conditions and stability, including long-term stability, acid resistance, and feed concentration. It was observed that the water contact angle of BTESE/TEOS-derived organosilica membrane decreased from (77.74± 0.47) ° to (36.67±1.05) ° as the content of TEOS increased, which proved that the surface property of the membrane could be changed by the part of hydrocarbon units after hydrolysis condensation reaction. As the molar ratio of BTESE to TEOS was 1 : 2, the organosilica membrane showed high pervaporation performance for 90 wt% isopropanol aqueous solutions at 75 ℃, with a water permeation flux of 10.580 kg·m-2·h-1 and separation factor of 1170. Stability experiments of long-term operation and acid environment in isopropanol aqueous solutions showed slight changes in flux and separation factor, proving that organosilica membranes had better stability. An increase in IPA concentration from 60 wt% to 90 wt% decreased both water flux and water content on the permeate side, suggesting that the effective pore sizes for permeation could be reduced by adsorption of IPA molecules, whereas the membrane remained high permeance in isopropanol aqueous solutions with high water content. The separation mechanism of pervaporation dehydration of isopropanol aqueous solutions by BTESE/TEOS-derived membrane was mainly attributed to the molecular sieve separation effect. The results showed that the BTESE/TEOS-derived organosilica membranes had an application prospect in the dehydration of aqueous-organic mixtures.
[References]
  1. Smitha B, Suhanya D, Sridhar S, Ramakrishna M, J. Membr. Sci., 241, 1, 2004
  2. Cheng X, Pan F, Wang M, Li W, Jiang Z, J. Membr. Sci., 541, 329, 2017
  3. Ravanchi MT, Kaghazchi T, Kargari A, Desalination, 235, 199, 2009
  4. Chapman PD, Oliveira T, Livingston AG, Li K, J. Membr. Sci., 318, 5, 2008
  5. Kita H, Horii K, Ohtoshi Y, Tanaka K, Okamoto KI, J. Mater. Sci., 14, 206, 1995
  6. Morigami Y, Kondo M, Abe J, Kita H, Okamoto K, Sep. Purif. Technol., 25, 251, 2001
  7. Kissick K, Ghorpade A, Hannah R, J. Membr. Sci., 179, 185, 2000
  8. Sato K, Sugimoto K, Nakane T, J. Membr. Sci., 307, 181, 2008
  9. Dong YR, Nakao M, Nishiyama N, Egashira Y, Ueyama K, Sep. Purif. Technol., 73, 2, 2010
  10. Tanaka S, Yasuda T, Katayama Y, Miyake Y, J. Membr. Sci., 379, 52, 2011
  11. Kitao S, Asaeda M, J. Chem. Eng. Jpn., 23, 367, 1990
  12. Veen H, Delft Y, Engelen C, Pex P, Sep. Purif. Technol., 22, 361, 2001
  13. Ying C, Kita H, Okamoto KI, J. Membr. Sci., 236, 17, 2004
  14. Lin X, Kikuchi E, Matsukata M, Chem. Commun., 11, 957, 2000
  15. Li G, Kikuchi E, Matsukata M, Sep. Purif. Technol., 32, 199, 2003
  16. Hasegawa Y, Hotta H, Sato K, Nagase T, Mizukami F, J. Membr. Sci., 34, 193, 2010
  17. Hasegawa Y, Nagase T, Kiyozumi Y, Hanaoka T, Mizukami F, J. Membr. Sci., 349, 189, 2010
  18. Asaeda M, Sakou Y, Yang J, Shimasaki K, J. Membr. Sci., 209, 163, 2002
  19. Asaeda M, Ishida M, Tasaka Y, Sep. Purif. Technol., 40, 239, 2005
  20. Sommer S, Melin T, Chem. Eng. Process., 44, 1138, 2005
  21. Yoshioka T, Tsuru T, Asaeda M, J. Membr. Sci., 284, 205, 2006
  22. Boffa V, Blank D, Elshof J, J. Membr. Sci., 319, 256, 2008
  23. Wang J, Tsuru T, J. Membr. Sci., 369, 13, 2011
  24. Castricum HL, Sah A, Kreiter R, Blank D, Vente JF, Elshof T, Johan, J. Mater. Chem., 18, 2150, 2008
  25. Castricum HL, Kreiter R, Veen H, Blank D, Vente JF, Elshof T, J. Membr. Sci., 324, 111, 2008
  26. Kanezashi M, Yada K, Yoshioka T, Tsuru T, J. Am. Chem. Soc., 131, 414, 2009
  27. Wang J, Kanezashi M, Yoshioka T, Tsuru T, J. Membr. Sci., 415, 810, 2012
  28. Wang J, Gong G, Kanezashi M, Yoshioka T, Ito K, Tsuru T, J. Membr. Sci., 441, 120, 2013
  29. Gang G, Wang J, Nagasawa H, Yoshioka T, Tsuru T, J. Membr. Sci., 464, 140, 2014
  30. Tsuru T, Shibata T, Wang J, Ryeon H, kanezashi M, Yoshioka T, J. Membr. Sci., 25, 421, 2012
  31. Wu HD, Liu HR, Liu XY, J. Chin. Ceram. Soc., 4, 7, 2020
  32. Castricum HL, Sah A, Mittelmeijer-Hazeleger MC, Huiskes C, Elshof JE, J. Mater. Chem., 17, 1509, 2007
  33. Meng L, Kanezashi M, Wang J, Tsuru T, J. Membr. Sci., 496, 211, 2015
  34. Chai SH, Du HB, Zhao YY, Lin YC, Kong CL, Chen L, Sep. Purif. Technol., 222, 162, 2019
  35. Lo CH, Lin MH, Liao KS, Guzman MD, Tsai HA, Rouessac V, Wei TC, Lee KR, Lai JY, J. Membr. Sci., 365, 418, 2010
  36. Kim JH, Lee YM, J. Membr. Sci., 193, 209, 2001
  37. Vos R, Verweij H, Science, 279, 1710, 1998
  38. Vos R, Verweij H, J. Membr. Sci., 143, 37, 1998
  39. Wang J, Gong G, Kanezashi M, Yoshioka T, Ito K, Tsuru T, J. Membr. Sci., 441, 120, 2013
  40. Gong G, Wang H, Nagasawa H, Kanezashi M, Yoshioka T, Tsuru T, J. Membr. Sci., 464, 140, 2014
  41. Gong G, Wang H, Nagasawa H, Kanezashi M, Yoshioka T, Tsuru T, J. Membr. Sci., 472, 19, 2014
  42. Cui Y, Kita H, Okamoto K, J. Membr. Sci., 236, 17, 2004
  43. Lin X, Kikuchi E, Matsukata M, Chem. Commun., 11, 957, 2000
  44. Nagasawa H, Matsuda N, Kanezashi M, Tsuru T, J. Membr. Sci., 498, 336, 2016