Issue
Korean Journal of Chemical Engineering,
Vol.40, No.1, 145-154, 2023
Application of water scrubbing technique for biogas upgrading in a microchannel
Biogas, produced as a result of anaerobic degradation of organic matter, is an alternative source of renewable energy and a sustainable and cost-effective fuel due to its high availability. However, before it can be used as an energy source, biogas must be upgraded by removing impurities such as CO2 and H2S to increase its calorific value. In this study, CO2 was removed and synthetic biogas was upgraded at atmospheric pressure in a microchannel using three absorbents of well water, seawater, and drinking water. The effects of operating variables, including absorbent flow rate, biogas flow rate, and system temperature, were investigated. As a function of independent variables, RSM analysis proposed a quadratic model for the absorption process by each absorbent to predict the response (CO2 removal efficiency). Moreover, the experimental values obtained for CO2 absorption were found to satisfactorily match the model values (R2=0.9991-0.9997). The maximum CO2 absorption in well water, seawater, and drinking water at 30 ℃, liquid flow rate of 150ml·h-1, and gas flow rate of 50ml·min-1 was 90.22, 84.95, and 79.66, respectively.
[References]
  1. Morgan Jr HM, Xie W, Liang J, Mao H, Lei H, Ruan R, Bu Q, Bioresour. Technol., 250, 910, 2018
  2. Li D, Kim M, Kim H, Choi O, Sang BI, Chiang PC, Kim H, Korean J. Chem. Eng., 35(1), 179, 2018
  3. Noorain R, Kindaichi T, Ozaki N, Aoi Y, Ohashi A, J. Clean Prod., 214, 103, 2019
  4. Abdeen FR, Mel M, Jami MS, Ihsan SI, Ismail AF, Chin. J. Chem. Eng., 24(6), 693, 2016
  5. Zhao Q, Leonhardt E, MacConnell C, Frear C, Chen S, Compressed Biomethane, CSANR, Ed, 24 (2010).
  6. Aghel B, Behaein S, Wongwises S, Shadloo MS, Biomass Bioenerg., 160, 106422, 2022
  7. Awe OW, Zhao Y, Nzihou A, Minh DP, Lyczko N, Waste Biomass Valorization, 8(2), 267, 2017
  8. Aghel B, Maleki M, Sahraie S, Heidaryan E, Fuel, 306, 121636, 2021
  9. van Vu P, Nguyen VC, Kim J, Korean J. Chem. Eng., 38(8), 1676, 2021
  10. Jin F, Xu H, Hua D, Chen L, Li Y, Zhao Y, Zuo B, Korean J. Chem. Eng., 38(1), 129, 2021
  11. Chen G, Wang F, Wang S, Ji C, Wang W, Dong J, Gao F, Korean J. Chem. Eng., 38(1), 46, 2021
  12. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG, Biotechnol. Adv., 36(2), 452, 2018
  13. Aghel B, Sahraie S, Heidaryan E, Energy, 117618, 2020
  14. Aghel B, Sahraie S, Heidaryan E, Varmira K, Process Saf. Environ. Protect., 131, 152, 2019
  15. Cozma P, Ghinea C, Mamaliga I, Wukovits W, Friedl A, Gavrilescu M, Clean - Soil, Air, Water, 41(9), 917, 2013
  16. Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M, Appl. Energy, 208, 1379, 2017
  17. Deublein D, Steinhauser A, Biogas from waste and renewable resources, John Wiley & Sons, Weinheim, Germany (2008).
  18. Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Ma J, Yu L, Li X, Chin. J. Chem. Eng., 22(8), 950, 2014
  19. Ghaib K, Ben-Fares FZ, Renew. Sust. Energ. Rev., 81, 433, 2018
  20. Benizri D, Dietrich N, Labeyrie P, Hébrard G, Sep. Purif. Technol., 219, 169, 2019
  21. Budzianowski WM, Wylock CE, Marciniak PA, Energy Conv. Manag., 141, 2, 2017
  22. Geng H, Chen Q, Zhao G, The Experiment Study of Biogas Atomization Upgrading with Water Scrubbing at Atmospheric Pressure, (2015).
  23. Walozi R, Nabuuma B, Sebiti A, Univers. J. Agric. Res., 4, 60, 2016
  24. Tamhankar Y, King B, Whiteley J, Cai T, McCarley K, Resetarits M, Aichele C, Chem. Eng. Res. Des., 104, 376, 2015
  25. Salimi H, Hashemipour N, Karimi-Sabet J, Amini Y, Chem. Prod. Process Model. (2021).
  26. Aghel B, Heidaryan E, Sahraie S, Mir S, J. Clean Prod., 231, 723, 2019
  27. Abdollahi P, Karimi-Sabet J, Moosavian MA, Amini Y, Sep. Purif. Technol., 231, 115875, 2020
  28. Jahromi PF, Karimi-Sabet J, Amini Y, Fadaei H, Chem. Eng. J., 328, 1075, 2017
  29. Jahromi PF, Karimi-Sabet J, Amini Y, Chem. Eng. J., 334, 2603, 2018
  30. Akkarawatkhoosith N, Kaewchada A, Jaree A, J. Taiwan Inst. Chem. Eng., 98, 113, 2019
  31. Zhu C, Li C, Gao X, Ma Y, Liu D, Int. J. Heat Mass Transf., 73, 492, 2014
  32. Dastbaz A, Karimi-Sabet J, Ahadi H, Amini Y, Desalination, 424, 62, 2017
  33. Li H, Tang Z, Xing X, Guo D, Cui L, Mao XZ, Energy, 164, 1135, 2018
  34. Li Y, Tsui T, J. Geophys. Res., 76, 4203, 1971
  35. Li C, Zhu C, Ma Y, Liu D, Gao X, Int. J. Heat Mass Transf., 78, 1055, 2014
  36. Asfaram A, Ghaedi M, Azqhandi MHA, Goudarzi A, Dastkhoon M, RSC Adv., 6, 40502, 2016
  37. Xiao Y, Yuan H, Pang Y, Chen S, Zhu B, Zou D, Ma J, Yu L, Li X, Chin. J. Chem. Eng., 22(8), 950, 2014
  38. Pirola C, Galli F, Bianchi CL, Manenti F, Technology, 3, 99, 2015
  39. Aghel B, Gouran A, Behaein S, Chem. Eng. Process., 175, 108927, 2022
  40. Rajivgandhi MMC, Singaravelu M, Environ. Biotechnol., 7(3), 639, 2014
  41. Kohl AL, Nielsen R, Gas purification, Elsevier (1997)
  42. Läntelä J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307, 2012