Issue
Korean Journal of Chemical Engineering,
Vol.40, No.1, 79-90, 2023
Enhancement analysis of turbulent flow and heat transfer of supercritical CO2 in a static mixer with three helical blades
Supercritical CO2 has excellent flow and heat transfer characteristics, but studies are lacking on the heat transfer characteristics of static mixers using it as a working medium. To obtain the heat transfer enhancement mechanism of supercritical CO2 within static mixers with three helical blades (TKSM), the flow and heat transfer characteristics of supercritical CO2 in horizontal and vertically upward of TKSM were determined by three-dimensional steadystate numerical simulation at Re=7,900-22,385, respectively. With other parameters fixed, lower heat flux, inlet temperature, operating pressure, or higher mass flow corresponds to higher heat transfer coefficients (h). The orthogonal test revealed that mass flow has the greatest effect on heat transfer. Besides, the results showed that the comprehensive performance evaluation criteria (PEC) of TKSM were 1.18-1.64 times and 1.25-1.47 times of Kenics static mixer (KSM) in two different states. Considering the local deterioration of the horizontal flow, the vertically upward flow was recommended with uniform temperature distributions. Compared with the horizontal flow, the heat transfer capacity of TKSM in the upward flow increases by 92.64%-119.63%, whereas the buoyancy effect decreases by 99.83%- 99.97%.
[References]
  1. Zendehboudi A, Ye ZL, Hafner A, Andresenc T, Skaugen G, Int. J. Heat Mass Transf., 178, 121641, 2021
  2. Ehsan MM, Guan Z, Klimenko AY, Renew. Sust. Energ. Rev., 92, 658, 2018
  3. Ge YT, Tassou SA, Santosa ID, Tsamos K, Appl. Energy, 160, 973, 2015
  4. Liao SM, Zhao TS, Int. J. Heat Mass Transf., 45, 5025, 2002
  5. Dang CB, Hihara E, Int. J. Refrig. -Rev. Int. Froid, 27, 736, 2004
  6. Liu XX, Xu XX, Liu C, Zhang SJ, He JC, Dang CB, Appl. Therm. Eng., 181, 115987, 2020
  7. Zhu XJ, Zhang RZ, Yu X, Cao MG, Ren YX, Energies, 13, 3502, 2020
  8. Zhang GW, Hu P, Chen LX, Liu MH, Appl. Therm. Eng., 143, 1101, 2018
  9. Yan CS, Xu JL, Zhu BG, Liu GL, Materials, 13, 723, 2020
  10. Bai WJ, Xu XX, Wu YY, CIESC J., 67, 1244, 2016
  11. Xiang MR, Guo JF, Huai XL, Cheng KY, Cui XY, Zhang Z, Zhang J, J. Eng. Thermophy-rus., 38, 1929, 2017
  12. Zhao ZH, Shandong Univ. (2019).
  13. Yan CS, Xu JL, Acta Phys. Sin., 69, 136, 2020
  14. Wang JY, Guan ZQ, Gurgenci H, Veeraragavan A, Kang X, Hooman K, Int. J. Therm. Sci., 138, 190, 2019
  15. Zhuang XR, Xu XH, Yang Z, Zhao YX, Yu P, Acta Phys. Sin., 70, 176, 2021
  16. Wang SX, Zhang W, Niu ZY, Xu JL, CIECS J., 64, 3917, 2013
  17. Wang KZ, Xu XX, Wu YY, Liu C, Dang CB, J. Supercrit. Fluids, 99, 112, 2015
  18. Wang KZ, Xu XX, Liu C, Bai WJ, Dang CB, Int. J. Heat Mass Transf., 108, 1645, 2017
  19. Yang M, Appl. Therm. Eng., 109, 685, 2016
  20. Liu XX, Shan H, Zhang SJ, Xu XX, Liu C, J. Eng. Thermophys-rus., 41, 55, 2020
  21. Liu XX, Ye J, Xu XX, Liu C, Wang KZ, Li HR, Bai WJ, CIESC J., 67, 120, 2016
  22. Zhao HJ, Li XW, Wu XX, J. Supercrit. Fluids, 127, 48, 2017
  23. Cheng J, North China Electric Power Univ. (2020).
  24. Ankudinov VB, Kurganov VA, High Temp.-High Press., 19, 870, 1982
  25. Shiralkar BS, Peter G, J. Heat Transf. -Trans. ASME, 91, 27, 1969
  26. Wang Z, Xu R, Xiong C, Jiang P, J. Tsinghua Univ., 58, 1101, 2018
  27. Bae YY, Kim HY, Yoo TH, Int. J. Heat Fluid Flow, 32, 340, 2011
  28. Regner M, Östergren K, TräGåRdh C, Chem. Eng. Sci., 61, 6133, 2006
  29. Jones SC, Sotiropoulos F, Amirtharajah A, J. Environ. Eng.-ASCE, 125, 5, 2015
  30. Ghanem A, Lemenand T, Valle DD, Peerhossaini H, Chem. Eng. Res. Des., 92, 205, 2014
  31. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G, Chem. Eng. Res. Des., 81, 787, 2003
  32. Li WG, Yu ZB, Wang Y, Li YL, Therm. Sci. Eng. Progress, 31, 101285, 2022
  33. Simões PC, Afonso B, Fernandes J, Mota JPB, J. Supercrit. Fluids, 43, 477, 2008
  34. Lisboa PF, Fernandes J, Simões PC, Mota JPB, Saatdjian E, J. Supercrit. Fluids, 55, 107, 2010
  35. Meng HB, Wang F, Yu YF, Song MY, Wu JH, Ind. Eng. Chem. Res., 53, 4084, 2014
  36. Meng HB, Song MY, Yu YF, Wang F, Wu JH, Can. J. Chem. Eng., 93, 1849, 2015
  37. Meng HB, Zhu GX, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 99, 647, 2016
  38. Meng HB, Han MQ, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 156, 119788, 2020
  39. Meng HB, Wang JB, Yu YF, Wang ZY, Wu JH, Chin. J. Process Eng., 22, 338, 2022
  40. Meng HB, Hao YN, Yu YF, Li ZG, Song SN, Wu JH, Korean J. Chem. Eng., 37, 1859, 2020
  41. Wu JH, Chinese Patent, 200,510,045,606.8 (2007).
  42. Menter FR, AIAA J., 32, 1598, 1994
  43. Meng HB, Meng T, Yu YF, Wang ZY, Wu JH, Int. J. Heat Mass Transf., 194, 123006, 2022
  44. McEltigot DM, Jackson JD, Nucl. Eng. Des., 232, 327, 2004
  45. Wang L, Pan YC, Lee JD, Wang Y, Fu BR, Pan C, Int. J. Heat Mass Transf., 159, 120136, 2020
  46. Lin ZM, Sun DL, Wang LB, Heat Mass Transf., 45, 1351, 2009
  47. Song KW, Wang LB, Prog. Comput Fluid Dyn., 8, 496, 2008
  48. Zhu BG, Wu XM, Zhang L, Sun EH, Zhang HS, Xu JL, CIECS J., 70, 1282, 2019
  49. Gong B, Zhang J, Zhang CM, Wu JH, J. Beijing University Chem. Technol., 35, 84, 2008