Issue
Korean Journal of Chemical Engineering,
Vol.40, No.1, 46-56, 2023
Droplet size distribution in a biphasic liquid reactor for understanding the impact of various dual impeller designs on the morphology of S-PVC
This study investigated the effect of dual impeller geometry on the droplet size in the suspension-PVC (SPVC) polymerization process. To simulate the process, 1,2-dichloroethane was used as a dispersed phase, because it has been used to replace the toxic vinyl chloride monomer (VCM). Using a borescope method, a droplet size was measured for a biphasic liquid system, and the Sauter mean diameter increased by 46.5% as the upper paddle impeller was replaced by 20° pitched paddle. It also increased when the impeller diameter and the blade width increased. Considering this effect, a geometrical factor (F) was revised, and a calculated maximum energy dissipation rate was used for establishing the Sauter mean diameter correlation. The proposed correlation can estimate the Sauter mean diameter within ±20% error, and one can predict the normality of the polymerization under specific impeller geometry using this correlation.
[References]
  1. Lee JR, Hasolli N, Lee KS, Lee KY, Park YO, Korean J. Chem. Eng., 36, 1548, 2019
  2. Lee JW, Ko YC, Jung YK, Lee KS, Yoon ES, Comput. Chem. Eng., 21, S1105, 1997
  3. Samdavid S, Renganathan T, Krishnaiah K, Korean J. Chem. Eng., 39, 86, 2022
  4. Rave K, Hermes M, Wirz D, Hundshagen M, Friebel A, von Harbou E, Bart HJ, Skoda R, Chem. Eng. Sci., 253, 117518, 2022
  5. Bergbreiter DE, Sung SD, Adv. Synth. Catal., 348, 1352, 2006
  6. Liu B, Sun N, Jin Z, Zhang Y, Sunden B, Ind. Eng. Chem. Res., 58, 22376, 2019
  7. Im H, Park J, Lee JW, ACS Omega, 4, 1329, 2019
  8. Im H, Lee S, Lee JW, Chem. Eng. Res. Des., 136, 654, 2018
  9. Burgess RH, Manufacture and processing of PVC, CRC Press (1981).
  10. Darvishi R, Esfahany MN, Bagheri R, J. Vinyl Addit. Technol., 22, 470, 2016
  11. Smallwood PV, Polymer, 27, 1609, 1986
  12. Guo R, Yu E, Liu J, Wei Z, RSC Adv., 7, 24022, 2017
  13. Zerfa M, Brooks BW, J. Appl. Polym. Sci., 60, 2077, 1996
  14. Kobayashi T, Tomishima Y, Yamamoto T, Nojima Y, US Patent, 4,849,482 (1989).
  15. Park J, Lee S, Lee JW, Ind. Eng. Chem. Res., 57, 2310, 2018
  16. Gäbler A, Wegener M, Paschedag AR, Kraume M, Chem. Eng. Sci., 61, 3018, 2006
  17. Desnoyer C, Masbernat O, Gourdon C, Chem. Eng. Sci., 58, 1353, 2003
  18. Choi S, Jung I, Kim H, Na J, Lee JM, Korean J. Chem. Eng., 39, 515, 2022
  19. Hardy N, Augier F, Nienow AW, Béal C, Chaabane FB, Chem. Eng. Sci., 172, 158, 2017
  20. Gu D, Liu Z, Xu C, Li J, Tao C, Wang Y, Chem. Eng. Process., 118, 37, 2017
  21. Mishra V, Joshi J, Chem. Eng. Res. Des., 72, 657, 1994
  22. Borwankar RP, Chung SI, Wasan DT, J. Appl. Polym. Sci., 32, 5749, 1986
  23. Pacek AW, Chamsart S, Nienow AW, Bakker A, Chem. Eng. Sci., 54, 4211, 1999
  24. Calabrese RV, Chang TPK, Dang PT, AIChE J., 32, 657, 1986
  25. Mlynek Y, Resnick W, AIChE J., 18, 122, 1972
  26. Laso M, Steiner L, Hartland S, Chem. Eng. Sci., 42, 2437, 1987
  27. Ruiz MC, Lermanda P, Padilla R, Hydrometallurgy, 63, 65, 2002
  28. De Hert SC, Rodgers TL, AIChE J., 64, 3293, 2018
  29. Ritter J, Kraume M, Chem. Eng. Technol., 23, 579, 2000
  30. Lee S, Varma A, AIChE J., 61, 2228, 2015
  31. Brown DE, Pitt K, Chem. Eng. Sci., 29, 345, 1974
  32. Quadros PA, Baptista CMSG, Chem. Eng. Sci., 58, 3935, 2003
  33. Im H, Park J, Lee JW, Korean J. Chem. Eng., 36, 1680, 2019
  34. Ghotli RA, Abbasi MR, Bagheri AH, Raman AAA, Ibrahim S, Bostanci H, J. Taiwan Inst. Chem. Eng., 100, 26, 2019
  35. Bliatsiou C, Malik A, Böhm L, Kraume M, Ind. Eng. Chem. Res., 58, 2537, 2019
  36. Park J, Ahan W, Lee JW, Korean J. Chem. Eng., 38, 1348, 2021
  37. Rumble JR, Lide DR, Bruno TJ, CRC handbook of chemistry and physics, CRC Press, Florida (2017).
  38. Vargaftik NB, Volkov BN, Voljak LD, J. Phys. Chem. Ref Data, 12, 817, 1983
  39. Laliberté M, J. Chem. Eng. Data, 52, 321, 2007
  40. Girault HHJ, Schiffrin DJ, Smith BDV, J. Colloid Interface Sci., 101, 257, 1984
  41. Zeynali V, Sargolzaei J, Moghaddam AH, Desalin. Water Treat., 56, 24240, 2016
  42. Sargolzaei J, Moghaddam AH, Shayegan J, Korean J. Chem. Eng., 28, 1889, 2011
  43. Masoudi SMA, Moghaddam AH, Sargolzaei J, Darroudi A, Zeynali V, Environ. Prog. Sustain. Energy, 37, 1638, 2018
  44. Coulaloglou CA, Tavlarides LL, AIChE J., 22, 289, 1976
  45. Chatzi EG, Boutris CJ, Kiparissides C, Ind. Eng. Chem. Res., 30, 1307, 1991
  46. Henzler HJ, Biedermann A, Chemie Ing. Tech., 68, 1546, 1996
  47. Jüsten P, Paul GC, Nienow AW, Thomas CR, Biotechnol. Bioeng., 52, 672, 1996
  48. Smith JJ, Lilly MD, Fox RI, Biotechnol. Bioeng., 35, 1011, 1990
  49. Paul EL, Atiemo-Obeng VA, Kresta SM, Handbook of industrial mixing: Science and practice, John Wiley & Sons (2003).
  50. Lovick J, Mouza AA, Paras SV, Lye GJ, Angeli P, J. Chem. Technol. Biotechnol., 80, 545, 2005
  51. Hudcova V, Machon V, Nienow AW, Biotechnol. Bioeng., 34, 617, 1989
  52. Cutter LA, AIChE J., 12, 35, 1966
  53. Wu H, Patterson GK, Chem. Eng. Sci., 44, 2207, 1989
  54. Sheng J, Meng H, Fox RO, Chem. Eng. Sci., 55, 4423, 2000