Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3482-3496, 2022
New understanding of the effect of particle mass loading on the performance of a square cyclone at low and high gas temperatures
Although particle loading is often assumed to have a significant impact on fluid flow in cyclone separators, the specific effect can be confusing due to a lack of fundamental knowledge of the operating principles. The problem was addressed in this work by numerically analyzing the particle mass loading impact of different sizes on the flow within the square cyclone separator using the computational fluid dynamics (CFD) approach. This type of cyclone is an effective cleaning mechanism for high-temperature gases in a circulating fluidized bed (CFB) boiler. Therefore, it is also critical to investigate the effect of particle mass loading on gas flow at low and high temperatures, which has yet to be taken into account in the literature. Consequently, the current study focuses on this issue as a first step toward developing square cyclones by better understanding the influence of particle concentration on airflow. To describe particle flow, the Eulerian-Lagrangian technique was used to solve the unsteady Reynolds-averaged Navier-Stokes (URANS) equations. The discrete random walk (DRW) was employed to evaluate velocity fluctuations. The results demonstrated that as particle mass loading increased, the sweeping impact of enhanced larger particles caused the smaller particles to flow toward the wall region, increasing particle concentration at the wall region. The particle concentration at the bottom of the square cyclone increased 11 times when the particle mass loading increased from 6.9 to 41.7 g/m3. As the tangential velocity of the gas increased with particle mass loading, more particles accumulated at the bottom of the conical section and remained there for an extended length of time, increasing the chances of their separation.
[References]
  1. Venkatesh S, Sakthivel M, Sudhagar S, Daniel SA, Particul. Sci. Technol., 37, 794, 2018
  2. Nassaj OR, Toghraie D, Afrand M, Powder Technol., 356, 353, 2019
  3. Su Y, Zheng A, Zhao B, Powder Technol., 210, 293, 2011
  4. Fatahian H, Fatahian E, Iran. J. Chem. Chem. Eng., 41, 670, 2022
  5. Fatahian E, Fatahian H, Hosseini E, Ahmadi G, Powder Technol., 387, 454, 2021
  6. Malahayati N, Darmadi D, Putri C, Mairiza L, Rinaldi W, Yunardi Y, Mater. Today-Proc., 63, 318, 2022
  7. Wasilewski M, Brar L, Ligus G, Sep. Purif. Technol., 239, 116588, 2020
  8. Safikhani H, Akhavan-Behabadi M, Nariman-Zadeh N, Abadi M, Chem. Eng. Res. Des., 89, 301, 2011
  9. Venkatesh S, Kumar RS, Sivapirakasam S, Sakthivel M, Venkatesh D, Arafath S, Powder Technol., 371, 115, 2020
  10. Wasilewski M, Brar L, Ligus G, Sep. Purif. Technol., 274, 119020, 2021
  11. Venkatesh S, Sivapirakasam S, Sakthivel M, Ganeshkumar S, Prabhu M, Naveenkumar M, Powder Technol., 383, 103, 2021
  12. Safikhani H, Shams M, Dashti S, Adv. Powder Technol., 22, 359, 2011
  13. Fatahian H, Fatahian E, Nimvari ME, Powder Technol., 339, 232, 2018
  14. Fatahian H, Hosseini E, Fatahian E, Adv. Powder Technol., 31, 1748, 2020
  15. Raoufi A, Shams M, Kanani H, Powder Technol., 191, 349, 2009
  16. Hosseini E, J. Brazil. Soc. Mech. Sci. Eng., 42, 1, 2020
  17. Fatahian H, Fatahian E, Nimvari ME, Ahmadi G, Powder Technol., 380, 67, 2021
  18. Safikhani H, Rafiee M, Ashtiani D, Adv. Powder Technol., 32, 3268, 2021
  19. Gimbun J, Chuah T, Fakhru’l-Razi A, Choong T, Chem. Eng. Process., 44, 7, 2005
  20. Karagoz I, Kaya F, Int. Commun. Heat Mass Transf., 34, 1119, 2007
  21. Siadaty M, Kheradmand S, Ghadiri F, Adv. Powder Technol., 28, 1459, 2017
  22. Yohana E, Tauviqirrahman M, Yusuf B, Choi KH, Paramita V, Powder Technol., 377, 464, 2021
  23. Huang AN, Maeda N, Sunada S, Fukasawa T, Yoshida H, Kuo H, Fukui K, Sep. Purif. Technol., 183, 293, 2017
  24. Jafarnezhad A, Salarian H, Kheradmand S, Khaleghinia J, J. Brazil. Soc. Mech. Sci. Eng., 43(2), 1, 2021
  25. Qian F, Huang Z, Chen G, Zhang M, Comput. Chem. Eng., 31, 1111, 2007
  26. Chu KW, Wang B, Xu DL, Chen YX, Yu AB, Chem. Eng. Sci., 66, 834, 2011
  27. Kozołub P, Klimanek A, Białecki R, Adamczyk W, Particuology, 31, 170, 2017
  28. Bogodage S, Leung AY, J. Hazard. Mater., 311, 100, 2016
  29. Huang AN, Ito K, Fukasawa T, Fukui K, Kuo H, J. Taiwan Inst. Chem. E, 90, 61, 2018
  30. Derksen J, Sundaresan S, Van den Akker H, Powder Technol., 163, 59, 2006
  31. Wan G, Sun G, Xue X, Shi M, Powder Technol., 183, 94, 2008
  32. Su Y, Mao Y, Chem. Eng. J., 121, 51, 2006
  33. Elsayed K, Lacor C, Powder Technol., 217, 84, 2012
  34. Elsayed K, Lacor C, Appl. Math. Model., 35, 1952, 2011
  35. Bogodage S, Leung AY, Powder Technol., 286, 488, 2015
  36. Launder B, Reece G, Rodi W, J. Fluid Mech., 68, 537, 1975
  37. Hoekstra AJ, Derksen J, Den Akker HV, Chem. Eng. Sci., 54, 2055, 1999
  38. Elsayed K, Lacor C, Chem. Eng. Sci., 65, 6048, 2010
  39. Safikhani H, Hajiloo A, Ranjbar M, Comput. Chem. Eng., 35, 1064, 2011
  40. Elsayed K, Lacor C, Comput. Fluids, 68, 134, 2012
  41. Morsi SA, Alexander AJ, J. Fluid Mech., 55, 193, 1972
  42. Elsayed K, Lacor C, Comput. Fluids, 51, 48, 2011
  43. Parvaz F, Hosseini S, Elsayed K, Ahmadi G, Sep. Purif. Technol., 201, 223, 2018
  44. Song C, Pei B, Jiang M, Wang B, Xu D, Chen Y, Powder Technol., 294, 437, 2016
  45. Hosseini E, Fatahian H, Ahmadi G, Nimvari ME, Fatahian E, J. Brazil. Soc. Mech. Sci. Eng., 43(9), 1, 2021
  46. Wasilewski M, Brar L, Sep. Purif. Technol., 213, 19, 2019
  47. Shin M, Kim H, Jang D, Chung J, Bohnet M, Appl. Therm. Eng., 25, 1821, 2005
  48. Siadaty M, Kheradmand S, Ghadiri F, Appl. Therm. Eng., 137, 329, 2018
  49. Erol H, Turgut O, Unal R, Heat Mass Transf., 55, 2341, 2019
  50. Wang S, Li H, Wang R, Wang X, Tian R, Sun Q, Adv. Powder Technol., 30, 227, 2019
  51. Wakizono Y, Maeda T, Fukui K, Yoshida H, Sep. Purif. Technol., 141, 84, 2015
  52. Qian F, Huang Z, Chen G, Zhang M, Comput. Chem. Eng., 31, 1111, 2007